Skip to main content
Log in

Water-dispersible glycosylated poly (2,5’-thienylene)porphyrin-based nanoparticles for antibacterial photodynamic therapy

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Here we report the preparation of water-dispersible glycosylated poly(2,5’-thienylene)porphyrin based nanoparticles by a nanoprecipitation method and demonstrate the application of these nanoparticles in antibacterial photodynamic therapy. The diameter of the nanoparticles is in the range of 50–80 nm and the resulting nanoparticles are stable in water without precipitation at least for a month. They have high singlet oxygen efficiency and display light-triggered biocidal activity against both Gram negative bacteria (Escherichia coli, E. coli) and Gram positive bacteria (Bacillus subtilis, B. subtilis). Upon white light irradiation for 10 min with a flux of 22 mW cm−2 of the E. coli suspension incubated with NPs (18 μg mL−1), a killing efficiency of 99% is achieved, whereas in the dark the effect is recorded as only around 8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. WHO, WHO Library Cataloguing-in-Publication Data, Antimicrobial resistance: global report on surveillance, 2014, pp. 1–232.

  2. A. Fajardo, N. Martinez-Martin, M. Mercadillo, J. C. Galan, B. Ghysels, S. Matthijs, P. Cornelis, L. Wiehlmann, B. Tummler, F. Baquero and J. L. Martinez, The neglected intrinsic resistome of bacterial pathogens, PLoS One, 2008, 3, e1619.

  3. T. Maisch, Resistance in antimicrobial photodynamic inactivation of bacteria, Photochem. Photobiol. Sci., 2015, 14, 1518–1526.

    Article  CAS  Google Scholar 

  4. T. Maisch, A new strategy to destroy antibiotic resistant microorganisms: antimicrobial photodynamic treatment, Mini-Rev. Med. Chem., 2009, 9, 974–983.

    Article  CAS  Google Scholar 

  5. E. C. Ziegelhoffer and T. J. Donohue, Bacterial responses to photo-oxidative stress, Nat. Rev. Microbiol., 2009, 7, 856–863.

    Article  CAS  Google Scholar 

  6. D. Phillips, Light relief: photochemistry and medicine, Photochem. Photobiol. Sci., 2010, 9, 1589–1596.

    Article  CAS  Google Scholar 

  7. B. C. Wilson and M. S. Patterson, The physics, biophysics and technology of photodynamic therapy, Phys. Med. Biol., 2008, 53, R61–R109.

  8. J. S. Lindsey, Synthesis of meso-Substituted Porphyrins, in The Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith and R. Guilard, Academic Press, New York, 2000, vol. 1, pp. 67–118.

  9. R. Bonnett, Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy, Chem. Soc. Rev., 1995, 24, 19–33.

    Article  CAS  Google Scholar 

  10. E. D. Sternberg, D. Dolphin and C. Brückner, Porphyrinbased photosensitizers for use in photodynamic therapy, Tetrahedron, 1998, 54, 4151–4202.

    Article  CAS  Google Scholar 

  11. S. Singh, A. Aggarwal, N. V. S. D. K. Bhupathiraju, G. Arianna, K. Tiwari and C. M. Drain, Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics, Chem. Rev., 2015, 115, 10261–10306.

    Article  CAS  Google Scholar 

  12. Y. Wang, K. S. Schanze, E. Y. Chi and D. G. Whitten, When worlds collide: interactions at the interface between biological systems and synthetic cationic conjugated polyelectrolytes and oligomers, Langmuir, 2013, 29, 10635–10647.

    Article  CAS  Google Scholar 

  13. C. Zhu, L. Liu, Q. Yang, F. Lv and S. Wang, Water-soluble conjugated polymers for imaging, diagnosis, and therapy, Chem. Rev., 2012, 112, 4687–4735.

    Article  CAS  Google Scholar 

  14. H. Sun, B. Yin, H. Ma, H. Yuan, B. Fu and L. Liu, Synthesis of a novel quinoline skeleton introduced cationic polyfluorene derivative for multimodal antimicrobial application, ACS Appl. Mater. Interfaces, 2015, 7, 25390–25395.

    Article  CAS  Google Scholar 

  15. Q. Zhao, J. Li, X. Zhang, Z. Li and Y. Tang, Cationic Oligo (thiophene ethynylene) with broad-spectrum and high antibacterial efficiency under white light and specific biocidal activity against S. aureus in dark, ACS Appl. Mater. Interfaces, 2016, 8, 1019–1024.

    Article  CAS  Google Scholar 

  16. Y. Tang, T. S. Corbitt, A. Parthasarathy, Z. Zhou, K. S. Schanze and D. G. Whitten, Light-induced antibacterial activity of symmetrical and asymmetrical oligophenylene ethynylenes, Langmuir, 2011, 27, 4956–4962.

    Article  CAS  Google Scholar 

  17. S. Li, K. Chang, K. Sun, Y. Tang, N. Cui, Y. Wang, W. Qin, H. Xu and C. Wu, Amplified singlet oxygen generation in semiconductor polymer dots for photodynamic cancer therapy, ACS Appl. Mater. Interfaces, 2016, 8, 3624–3634.

    Article  CAS  Google Scholar 

  18. C. Xing, Q. Xu, H. Tang, L. Liu and S. Wang, Conjugated polymer/porphyrin complexes for efficient energy transfer and improving light-activated antibacterial activity, J. Am. Chem. Soc., 2009, 131, 13117–13124.

    Article  CAS  Google Scholar 

  19. I. Yoon, J. Z. Li and Y. K. Shim, Advance in Photosensitizers and Light Delivery for Photodynamic Therapy, Clin. Endosc., 2013, 46(1), 7–23.

  20. D. Ma, Z.-H. Liu, Q.-Q. Zheng, X.-Y. Zhou, Y. Zhang, Y.-F. Shi, J.-T. Lin and W. Xue, Star-shaped polymer consisting of a porphyrin core and poly (L-lysine) dendron arms: synthesis, drug delivery, and in vitro chemo/photodynamic therapy, Macromol. Rapid Commun., 2013, 34, 548–552.

    Article  CAS  Google Scholar 

  21. L. Xu, L. Liu, F. Liu, W. Li, R. Chen, Y. Gao and W. Zhang, Photodynamic therapy of oligoethylene glycol dendronized reduction-sensitive porphyrins, J. Mater. Chem. B, 2015, 3, 3062–3071.

    Article  CAS  Google Scholar 

  22. Y. Chen, D. Zhao and Y. Liu, Polysaccharide–porphyrin–fullerene supramolecular conjugates as photo-driven DNA cleavage reagents, Chem. Commun., 2015, 51, 12266–12269.

    Article  CAS  Google Scholar 

  23. G. Garcia, D. Naud-Martin, D. Carrez, A. Croisy and P. Maillard, Microwave-mediated ‘click-chemistry’synthesis of glycoporphyrin derivatives and in vitro photocytotoxicity for application in photodynamic therapy, Tetrahedron, 2011, 67, 4924–4932.

    Article  CAS  Google Scholar 

  24. S. Mandal, S. Bhattacharyya, V. Borovkov and A. Patra, Porphyrin-based functional nanoparticles: conformational and photophysical properties of bis-porphyrin and bis-porphyrin encapsulated polymer nanoparticles, J. Phys. Chem. C, 2011, 115, 24029–24036.

    Article  CAS  Google Scholar 

  25. L. Zhao, R. Qu, A. Li, R. Mab and L. Shi, Cooperative self-assembly of porphyrins with polymers possessing bioactive functions, Chem. Commun., 2016, 52, 13543–13555.

    Article  CAS  Google Scholar 

  26. X. Gong, T. Milic, C. Xu, J. D. Batteas and C. M. Drain, Preparation and characterization of porphyrin nanoparticles, J. Am. Chem. Soc., 2002, 124, 14290–14291.

    Article  CAS  Google Scholar 

  27. H. Zhang, B. Zhang, M. Zhu, S. M. Grayson, R. Schmehl and J. Jayawickramarajah, Water-soluble porphyrin nanospheres: enhanced photo-physical properties achieved via cyclodextrin driven double self-inclusion, Chem. Commun., 2014, 50, 4853–4855.

    Article  CAS  Google Scholar 

  28. J. Zhao, H.-Y. Zhang, H.-L. Sun and Y. Liu, Supramolecular nanoassemblies of an amphiphilic porphyrin–cyclodextrin conjugate and their morphological transition from vesicle to network, Chem.Eur. J., 2015, 21, 4457–4464.

    Article  CAS  Google Scholar 

  29. Y. Liu, T. Pauloehrl, S. I. Presolski, L. Albertazzi, A. R. A. Palmans and E. W. Meijer, Modular synthetic platform for the construction of functional single-chain polymeric nanoparticles: from aqueous catalysis to photosensitization, J. Am. Chem. Soc., 2015, 137, 13096–13105.

    Article  CAS  Google Scholar 

  30. W.-D. Quan, A. Pitto-Barry, L. A. Baker, E. Stulz, R. Napier, R. K. O’Reilly and V. G. Stavros, Retaining individualities: the photodynamics of self-ordering porphyrin assemblies, Chem. Commun., 2016, 52, 1938–1941.

    Article  CAS  Google Scholar 

  31. D. A. Roberts, M. J. Crossley and S. Perrier, Fluorescent bowl-shaped nanoparticles from ‘clicked’porphyrin–polymer conjugates, Polym. Chem., 2014, 5, 4016–4021.

    Article  CAS  Google Scholar 

  32. D. A. Roberts, T. W. Schmidt, M. J. Crossley and S. Perrier, Tunable Self-Assembly of Triazole-Linked Porphyrin–Polymer Conjugates, Chem.Eur. J., 2013, 19, 12759–12770.

    Article  CAS  Google Scholar 

  33. B. Wang, H. Yuan, C. Zhu, Q. Yang, F. Lv, L. Liu and S. Wang, Polymer-drug conjugates for intracellular molecule-targeted photoinduced inactivation of protein and growth inhibition of cancer cells, Sci. Rep., 2012, 2, 766.

    Article  Google Scholar 

  34. K. Liu, Y. Liu, Y. Yao, H. Yuan, S. Wang, Z. Wang and X. Zhang, Supramolecular photosensitizers with enhanced antibacterial efficiency, Angew. Chem., Int. Ed., 2013, 125, 8443–8447.

    Article  Google Scholar 

  35. P. Mroz, J. Bhaumik, D. K. Dogutan, Z. Aly, Z. Kamal, L. Khalid, H. L. Kee, D. F. Bocian, D. Holten, J. S. Lindsey and M. R. Hamblin, Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: Role of molecular charge, central metal and hydroxyl radical production, Cancer Lett., 2009, 282(1), 63–76.

  36. R. Daly, G. Vaz, A. M. Davies, M. O. Senge and E. M. Scanlan, Synthesis and biological evaluation of a library of glycoporphyrin compounds, Chem.Eur. J., 2012, 18, 14671–14679.

    Article  CAS  Google Scholar 

  37. S. Silva, P. M. R. Pereira, P. Silva, F. A. A. Paz, M. A. F. Faustino, J. A. S. Cavaleiroa and J. P. C. Tome, Porphyrin and phthalocyanine glycodendritic conjugates: synthesis, photophysical and photochemical properties, Chem. Commun., 2012, 48, 3608–3610.

    Article  CAS  Google Scholar 

  38. S. Vedachalam, B.-H. Choi, K. K. Pasunooti, K. M. Ching, K. Lee, H. S. Yoon and X.-W. Liu, Glycosylated porphyrin derivatives and their photodynamic activity in cancer cells, MedChemComm, 2011, 2, 371–377.

    Article  Google Scholar 

  39. H.-R. Jia, Y.-X. Zhu, Z. Chen and F.-G. Wu, Cholesterolassisted bacterial cell surface engineering for photodynamic inactivation of Gram-positive and Gram-negative bacteria, ACS Appl. Mater. Interfaces, 2017, 9, 15943–15951.

    Article  CAS  Google Scholar 

  40. R. Khan, M. Idris and D. Tuncel, Synthesis and investigation of singlet oxygen production efficiency of photosensitizers based on meso-phenyl-2,5-thienylene linked porphyrin oligomers and polymers, Org. Biomol. Chem., 2015, 13, 10496–10504.

    Article  CAS  Google Scholar 

  41. N. Adarsh, R. R. Avirah and D. Ramaiah, Tuning photosensitized singlet oxygen generation efficiency of novel aza-BODIPY dyes, Org. Lett., 2010, 12, 5720–5723.

    Article  CAS  Google Scholar 

  42. G. A. Pankuch, G. Lin, D. B. Hoellman, C. E. Good, M. R. Jacobs and P. C. Appelbaum, Activity of retapamulin against Streptococcus pyogenes and Staphylococcus aureus evaluated by agar dilution, microdilution, E-test, and disk diffusion methodologies, Antimicrob. Agents Chemother., 2006, 50, 1727–1730.

    Article  CAS  Google Scholar 

  43. T. Gensch, C. Viappiani and S. E. Braslavsky, Structural volume changes upon photoexcitation of porphyrins: role of the nitrogen–water interactions, J. Am. Chem. Soc., 1999, 121, 10573–10582.

    Article  CAS  Google Scholar 

  44. S. Banfi, E. Caruso, L. Buccafurni, V. Battini, S. Zazzaron, P. Barbieri and V. Orlandi, Antibacterial activity of tetraarylporphyrin photosensitizers: an in vitro study on Gram negative and Gram positive bacteria, J. Photochem. Photobiol., B, 2006, 85, 28–38.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dönüs Tuncel.

Additional information

Electronic supplementary information (ESI) available: Full synthetic scheme for PTTP-Glu-Ac, synthetic procedure for PTTP, 1H, 13C-NMR spectra of PTTP, 1H, 13C-NMR, FT-IR, UV-Vis, PL spectra of PTTP-Glu-Ac, time-dependent decrease of absorbance spectra for DPBF with NPs, minimum inhibitory concentration plots of NPs against E. coli in the dark and under light, plate photographs for NPs against B. subtilis on YTD agar plate in the dark and under light. See DOI: 10.1039/c8pp00470f

These authors contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R., Özkan, M., Khaligh, A. et al. Water-dispersible glycosylated poly (2,5’-thienylene)porphyrin-based nanoparticles for antibacterial photodynamic therapy. Photochem Photobiol Sci 18, 1147–1155 (2019). https://doi.org/10.1039/c8pp00470f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00470f

Navigation