Skip to main content
Log in

Personal electronic UVR dosimeter measurements: specific and general uncertainties

  • PAPER
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Personal ultraviolet radiation (UVR) dosimetry has been performed for decades to objectively measure human exposure to UVR. These measurements have been used to investigate solar behaviour and its negative effects on human health such as skin cancer and positive effects such as vitamin D formation. A specific electronic dosimeter is described with a spectral sensitivity as the erythema response for human skin and temperature measurements for compliance control. Technical, methodological and environmental causes of uncertainties regarding personal UV dosimetry are investigated using this dosimeter as an example, which enables us to show the dosimeter's limitations and enables readers to compare their dosimeters with that described and to increase awareness of imperfections of dosimeters. The dosimeter's spectral response, cosine response, linearity, temperature dependency and sensitivity are investigated. As opposed to biological and chemical dosimeters, electronic dosimeters do not measure UV radiation continuously but at time-intervals (sampling). The error introduced by sampling is investigated for sampling intervals from 1 second up to 60 seconds for 3 groups of people (n = 18, 1.1-4.6 hours of positive UV measurements) on sunny (n = 12) and cloudy (n = 6) days. Increasing the sample time by 1 second added on average an uncertainty of maximum +0.29% to -0.27% per added second compared to the 1-second sample time. The importance of dirt on the sensor was investigated in 24 dosimeters after 6 months use by farmers. The reduction in the registered dose due to the dirty sensor was 2.3% (median = 2.0%, inter-quar-tile range = 2.0%, max = 5%) suggesting that dirt on the sensor generally does not playa significant role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. W. Schmalwieser and A. M. Siani, Review on Nonoccupational Personal Solar UV Exposure Measurements, Photochem. Photobiol., 2018, 94, 900–915.

    Article  CAS  Google Scholar 

  2. H. C. Wulf and J. Lock-Andersen, Standard erythema dose, Skin Res. Technol., 1996, 4, 192–192.

    Google Scholar 

  3. A. F. McKinlay and B. L. Diffey, A reference action spectrum for ultraviolet induced erythema in human skin, CIEJ, 1987, 6, 17–22.

    Google Scholar 

  4. A. Davis, G. H. W. Deane and B. L. Diffey, Possible Dosimeter for Ultraviolet-Radiation, Nature, 1976, 261, 169–170.

    Article  CAS  Google Scholar 

  5. N. Kollias, A. Baqer, I. Sadiq, R. Gillies and H. Ou-Yang, Measurement of solar UVB variations by polysulphone film, Photochem. Photobiol., 2003, 78, 220–224.

    Article  CAS  Google Scholar 

  6. G. Horneck, Quantification of the biological effectiveness of environmental UV radiation, J. Photochem. Photobiol., B, 1995, 31, 43–49.

    Article  CAS  Google Scholar 

  7. A. Berces, A. Fekete, S. Gaspar, P. Grof, P. Rettberg, G. Horneck and G. Ronto, Biological UV dosimeters in the assessment of the biological hazard from environmental radiation, J. Photochem. Photobiol., B, 1999, 53, 36–43.

    Article  CAS  Google Scholar 

  8. L. E. Quintern, Y. Furusawa, K. Fukutsu and H. Holtschmidt, Characterization and application of UV detector spore films: The sensitivity curve of a new detector system provides good similarity to the action spectrum for UV-induced erythema in human skin, J. Photochem. Photobiol., B, 1997, 37, 158–166.

    Article  CAS  Google Scholar 

  9. M. Allen and R. McKenzie, Enhanced UV exposure on a skifield compared with exposures at sea level, Photochem. Photobiol. Sci., 2005, 4, 429–437.

    Article  CAS  Google Scholar 

  10. J. Heydenreich and H. C. Wulf, Miniature personal electronic UVR dosimeter with erythema response and time-stamped readings in a wristwatch, Photochem. Photobiol., 2005, 81, 1138–1144.

    Article  CAS  Google Scholar 

  11. M. Bodekaer, P. A. Philipsen, B. Petersen, J. Heydenreich and H. C. Wulf, Defining “intermittent UVR exposure”, Photochem. Photobiol. Sci., 2016, 15, 1176–1182.

    Article  CAS  Google Scholar 

  12. A. R. Webb, UVB Instrumentation and Applications, Gordon and Breach Science Publishers, Amsterdam, The Netherlands, 1998.

    Google Scholar 

  13. B. L. Diffey, C. T. Jansen, F. Urbach and H. C. Wulf, The standard erythema dose: a new photobiological concept, Photodermatol., Photoimmunol. Photomed., 1997, 13, 64–66.

    Article  CAS  Google Scholar 

  14. C. A. Gueymard, SMARTS2, A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and performance assessment, Technical Paper FSEC-PF-270-95, 1995.

    Google Scholar 

  15. C. A. Gueymard, Parameterized transmittance model for direct beam and circumsolar spectral irradiance, Solar Energy, 2001, 71, 325–346.

    Article  CAS  Google Scholar 

  16. A. Ryer, Light Measurement Handbook, Technical Publications Dept., International Ligth, Inc., 17 Graf Road, Newburyport, MA 01950-4092, 1998.

    Google Scholar 

  17. K. Baczynska, J. B. O’Hagan, A. J. Pearson and P. Eriksen, Temperature Correction of UV Spectral Solar Measurements for ICEPURE Project, Photochem. Photobiol., 2011, 87, 1464–1467.

    Article  CAS  Google Scholar 

  18. T. Landelius and W. Josefsson, Methods for cosine correction of broadband UV data and their effect on the relation between UV irradiance and cloudiness, J. Geophys. Res.: Atmos., 2000, 105, 4795–4802.

    Article  Google Scholar 

  19. J. G. Ann Webb, Mario Blumthaler, COST 726 - A practical guide to operating broadband instruments measuring erythemally weighted irradiance, 2006.

    Google Scholar 

  20. A. R. Webb, Measuring UV radiation: A discussion of dosimeter properties, uses and limitations, J. Photochem. Photobiol., B, 1995, 31, 9–13.

    Article  CAS  Google Scholar 

  21. B. Petersen, H. C. Wulf, M. Triguero-Mas, P. A. Philipsen, E. Thieden, P. Olsen, J. Heydenreich, P. Dadvand, X. Basagana, T. S. Liljendahl, G. I. Harrison, D. Segerback, A. W. Schmalwieser, A. R. Young and M. J. Nieuwenhuijsen, Sun and ski holidays improve vitamin D status, but are associated with high levels of DNA damage, J. Invest. Dermatol., 2014, 134, 2806–2813.

    Article  CAS  Google Scholar 

  22. B. Koster, J. Sondergaard, J. B. Nielsen, M. Allen, M. Bjerregaard, A. Olsen and J. Bentzen, Feasibility of smartphone diaries and personal dosimeters to quantitatively study exposure to ultraviolet radiation in a small national sample, Photodermatol., Photoimmunol. Photomed., 2015, 31, 252–260.

    Article  Google Scholar 

  23. E. Thieden, P. A. Philipsen and H. C. Wulf, Ultraviolet radiation exposure pattern in winter compared with summer based on time-stamped personal dosimeter readings, Br. J. Dermatol., 2006, 154, 133–138.

    Article  CAS  Google Scholar 

  24. P. Weihs, A. Schmalwieser, C. Reinisch, E. Meraner, S. Walisch and M. Harald, Measurements of personal UV exposure on different parts of the body during various activities, Photochem. Photobiol., 2013, 89, 1004–1007.

    Article  CAS  Google Scholar 

  25. B. Petersen, M. Triguero-Mas, B. Maier, E. Thieden, P. A. Philipsen, J. Heydenreich, P. Dadvand, H. Maier, M. M. Grage, G. I. Harrison, A. W. Schmalwieser, M. J. Nieuwenhuijsen, A. R. Young and H. C. Wulf, Sun behaviour and personal UVR exposure among Europeans on short term holidays, J. Photochem. Photobiol., B, 2015, 151, 264–269.

    Article  CAS  Google Scholar 

  26. P. Schouten and A. V. Parisi, Direct comparison between the angular distributions of the erythemal and eye-damaging UV irradiances: a pilot study, J. Photochem. Photobiol., B, 2011, 102, 146–155.

    Article  CAS  Google Scholar 

  27. A. V. Parisi, M. G. Kimlin, R. Lester and D. Turnbull, Lower body anatomical distribution of solar ultraviolet radiation on the human form in standing and sitting postures, J. Photochem. Photobiol., B, 2003, 69, 1–6.

    Article  CAS  Google Scholar 

  28. B. L. Diffey and P. J. Saunders, Behavior outdoors and its effects on personal ultraviolet exposure rate measured using an ambulatory datalogging dosimeter, Photochem. Photobiol., 1995, 61, 615–618.

    Article  CAS  Google Scholar 

  29. N. Downs and A. Parisi, Measurements of the anatomical distribution of erythemal ultraviolet: a study comparing exposure distribution to the site incidence of solar keratoses, basal cell carcinoma and squamous cell carcinoma, Photochem. Photobiol. Sci., 2009, 8, 1195–1201.

    Article  CAS  Google Scholar 

  30. J. K. Vanos, G. R. McKercher, K. Naughton and M. Lochbaum, Schoolyard Shade and Sun Exposure: Assessment of Personal Monitoring During Children’s Physical Activity, Photochem. Photobiol., 2017, 93, 1123–1132.

    Article  CAS  Google Scholar 

  31. E. Thieden, M. S. Agren and H. C. Wulf, The wrist is a reliable body site for personal dosimetry of ultraviolet radiation, Photodermatol., Photoimmunol. Photomed., 2000, 16, 57–61.

    Article  CAS  Google Scholar 

  32. G. Seckmeyer, M. Klingebiel, S. Riechelmann, I. Lohse, R. L. McKenzie, J. B. Liley, M. W. Allen, A. M. Siani and G. R. Casale, A critical assessment of two types of personal UV dosimeters, Photochem. Photobiol., 2012, 88, 215–222.

    Article  CAS  Google Scholar 

  33. D. Vernez, A. Milon, L. Vuilleumier and J. L. Bulliard, Anatomical exposure patterns of skin to sunlight: relative contributions of direct, diffuse and reflected ultraviolet radiation, Br. J. Dermatol., 2012, 167, 383–390.

    Article  CAS  Google Scholar 

  34. B. Petersen, E. Thieden, P. A. Philipsen, J. Heydenreich, A. R. Young and H. C. Wulf, A sun holiday is a sunburn holiday, Photodermatol., Photoimmunol. Photomed., 2013, 29, 221–224.

    Article  Google Scholar 

  35. M. Bodekaer, G. I. Harrison, P. Philipsen, B. Petersen, M. Triguero-Mas, A. W. Schmalwieser, M. Rogowski-Tylman, P. Dadvand, A. Lesiak, J. Narbutt, P. Eriksen, J. Heydenreich, M. Nieuwenhuijsen, E. Thieden, A. R. Young and H. C. Wulf, Personal UVR exposure of farming families in four European countries, J. Photochem. Photobiol., B, 2015, 153, 267–275.

    Article  CAS  Google Scholar 

  36. M. Bodekaer, B. Petersen, P. A. Philipsen, J. Heydenreich, E. Thieden and H. C. Wulf, Sun exposure patterns of urban, suburban, and rural children: a dosimetry and diary study of 150 children, Photochem. Photobiol. Sci., 2015, 14, 1282–1289.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The described UVR dosimeter was developed as a part of the European Community's Seventh Framework Programme under grant agreement no. 227020. The project title is “The impact of climatic and environmental factors on personal UV radiation exposure and human health” (ICEPURE). We thank Peter Alshede Philipsen from Bispebjerg Hospital Copenhagen Denmark, Katarzyna Baczynska, Andy Pearson and John O'Hagan from Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, UK, and Paul Eriksen from the Danish Meteorological Institute, Copenhagen, DK for their help with the calibration of the UVR dosimeters. We also thank Mette Marie-Louise Grage for her help with the SMARTS2 calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Heydenreich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydenreich, J., Wulf, H.C. Personal electronic UVR dosimeter measurements: specific and general uncertainties. Photochem Photobiol Sci 18, 1461–1470 (2019). https://doi.org/10.1039/c8pp00379c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00379c

Navigation