Skip to main content
Log in

Intensification of the O3/TiO2/UV advanced oxidation process using a modified flotation cell

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The present work reports the use of a flotation cell as a prospective reactor for ozonation and the intensification of ozonation (catalytic ozonation and photocatalytic ozonation). The effect of the pH, ozone concentration and loading catalyst was investigated. The performance of the flotation cell was compared with that of conventional reactors used in ozonation through the ozone utilized index (OUI), which was proposed in this work and relates the amount of ozone supplied to the system per milligram of degraded pollutant. The flotation cell has the lowest OUI, which indicates that the ozone supplied is highly consumed. It was found that the modified flotation cell is an efficient reactor for ozonation, catalytic ozonation and photocatalytic ozonation processes because total diclofenac degradation was achieved in a short time, mass transfer limitations were not found (Ha = 7.26), and it presented a relatively low energy consumption (1.15 kW h m−3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Monteagudo, A. Durán and I. San Martín, Mineralization of wastewater from the pharmaceutical industry containing chloride ions by UV photolysis of H2O2/Fe(ii) and ultrasonic irradiation, J. Environ. Manage., 2014, 141, 61–69.

    Article  CAS  PubMed  Google Scholar 

  2. Z. Wang, J. Xu, W. Cai, B. Zhou, Z. He, C. Cai and X. Hong, J. Environ. Sci., 2005, 17, 76–80.

    Google Scholar 

  3. C. G. Daughton, Emerging pollutants, and communicating the science of environmental chemistry and mass spectrometry: Pharmaceuticals in the environment, J. Am. Soc. Mass Spectrom., 2001, 12, 1067–1076.

    Article  CAS  PubMed  Google Scholar 

  4. N. Zhang, J. M. Li, G. G. Liu, X. L. Chen and K. Jiang, Photodegradation of diclofenac in seawater by simulated sunlight irradiation: The comprehensive effect of nitrate, Fe(iii) and chloride, Mar. Pollut. Bull., 2017, 117, 386–391.

    Article  CAS  PubMed  Google Scholar 

  5. M. Fathinia and A. Khataee, Photocatalytic ozonation of phenazopyridine using TiO2nanoparticles coated on ceramic plates: Mechanistic studies, degradation intermediates and ecotoxicological assessments, Appl. Catal., A, 2015, 491, 136–154.

    Article  CAS  Google Scholar 

  6. F. Parrino, G. Camera-Roda, V. Loddo, G. Palmisano and V. Augugliaro, Combination of ozonation and photocatalysis for purification of aqueous effluents containing formic acid as probe pollutant and bromide ion, Water Res., 2014, 50, 189–199.

    Article  CAS  PubMed  Google Scholar 

  7. A. R. Krishnan and S. Kanmani, A study on synergistic effect of photocatalysis and ozonation on textile wastewater treatment, Indian J. Environ. Prot., 2008, 28, 979–984.

    Google Scholar 

  8. A. C. Mecha, M. S. Onyango, A. Ochieng, C. J. S. Fourie and M. N. B. Momba, Synergistic effect of UV–vis and solar photocatalytic ozonation on the degradation of phenol in municipal wastewater: A comparative study, J. Catal., 2016, 341, 116–125.

    Article  CAS  Google Scholar 

  9. T. Yang, J. Peng, Y. Zheng, X. He, Y. Hou, L. Wu and X. Fu, Enhanced photocatalytic ozonation degradation of organic pollutants by ZnO modified TiO2 nanocomposites, Appl. Catal., B, 2018, 221, 223–234.

    Article  CAS  Google Scholar 

  10. A. C. Mecha, M. S. Onyango, A. Ochieng and M. N. B. Momba, Ultraviolet and solar photocatalytic ozonation of municipal wastewater: Catalyst reuse, energy requirements and toxicity assessment, Chemosphere, 2017, 186, 669–676.

    Article  CAS  PubMed  Google Scholar 

  11. V. J. P. Vilar, C. C. Amorim, G. Li Puma, S. Malato and D. D. Dionysiou, Intensification of photocatalytic processes for niche applications in the area of water, wastewater and air treatment, Chem. Eng. J., 2017, 310, 329–330.

    Article  CAS  Google Scholar 

  12. M. S. Lucas, J. A. Peres, B. Y. Lan and G. Li Puma, Ozonation kinetics of winery wastewater in a pilot-scale bubble column reactor, Water Res., 2009, 43, 1523–1532.

    Article  CAS  PubMed  Google Scholar 

  13. B. Y. Lan, R. Nigmatullin and G. Li Puma, Ozonation kinetics of cork-processing water in a bubble column reactor, Water Res., 2008, 42, 2473–2482.

    Article  CAS  PubMed  Google Scholar 

  14. M. S. Lucas, J. A. Peres and G. Li Puma, Treatment of winery wastewater by ozone-based advanced oxidation processes (O3, O3/UV and O3/UV/H2O2) in a pilot-scale bubble column reactor and process economics, Sep. Purif. Technol., 2010, 72, 235–241.

    Article  CAS  Google Scholar 

  15. F. J. Beltrán, A. Aguinaco and J. F. García-Araya, Kinetic modelling of TOC removal in the photocatalytic ozonation of diclofenac aqueous solutions, Appl. Catal., B, 2010, 100, 289–298.

    Article  CAS  Google Scholar 

  16. A. Aguinaco, F. J. Beltrán, J. F. García-Araya and A. Oropesa, Photocatalytic ozonation to remove the pharmaceutical diclofenac from water: Influence of variables, Chem. Eng. J., 2012, 189–190, 275–282.

    Article  CAS  Google Scholar 

  17. V. Naddeo, V. Belgiorno, D. Ricco and D. Kassinos, Degradation of diclofenac during sonolysis, ozonation and their simultaneous application, Ultrason. Sonochem., 2009, 16, 790–794.

    Article  CAS  PubMed  Google Scholar 

  18. M. S. Lucas, N. M. Reis and G. Li Puma, Intensification of ozonation processes in a novel, compact, multi-orifice oscillatory baffled column, Chem. Eng. J., 2016, 296, 335–339.

    Article  CAS  Google Scholar 

  19. A. Dhenain, G. Mercier, J. F. Blais and M. Chartier, Combined column and cell flotation process for the treatment of PAH contaminated hazardous wastes produced by an aluminium production plant, J. Hazard. Mater., 2009, 165, 394–407.

    Article  CAS  PubMed  Google Scholar 

  20. J. Yianatos and F. Contreras, Particle entrainment model for industrial flotation cells, Powder Technol., 2010, 197, 260–267.

    Article  CAS  Google Scholar 

  21. E. Amini, D. J. Bradshaw, J. A. Finch and M. Brennan, Influence of turbulence kinetic energy on bubble size in different scale flotation cells, Miner. Eng., 2013, 45, 146–150.

    Article  CAS  Google Scholar 

  22. J. Meng, W. Xie, E. Tabosa, K. Runge and D. Bradshaw, Turbulence model development for flotation cells based on piezoelectric sensor measurements, Int. J. Miner. Process., 2016, 156, 116–126.

    Article  CAS  Google Scholar 

  23. S. Ata and G. J. Jameson, The formation of bubble clusters in flotation cells, Int. J. Miner. Process., 2005, 76, 123–139.

    Article  CAS  Google Scholar 

  24. R. R. Solís, F. J. Rivas, A. Martínez-Piernas and A. Agüera, Ozonation, photocatalysis and photocatalytic ozonation of diuron: Intermediates identification, Chem. Eng. J., 2016, 292, 72–81.

    Article  CAS  Google Scholar 

  25. C. H. Wu and H. Y. Ng, Degradation of C.I. Reactive Red 2 (RR2) using ozone-based systems: Comparisons of decolorization efficiency and power consumption, J. Hazard. Mater., 2008, 152, 120–127.

    Article  CAS  PubMed  Google Scholar 

  26. S. P. Ghuge and A. K. Saroha, Catalytic ozonation for the treatment of synthetic and industrial effluents - Application of mesoporous materials: A review, J. Environ. Manage., 2018, 211, 83–102.

    Article  CAS  PubMed  Google Scholar 

  27. H. Yan, W. Chen, G. Liao, X. Li, S. Ma and L. Li, Activity assessment of direct synthesized Fe-SBA-15 for catalytic ozonation of oxalic acid, Sep. Purif. Technol., 2016, 159, 1–6.

    Article  CAS  Google Scholar 

  28. O. Oputu, M. Chowdhury, K. Nyamayaro, O. Fatoki and V. Fester, Catalytic activities of ultra-small B-FeOOH nano-rods in ozonation of 4-chlorophenol, J. Environ. Sci., 2015, 35, 83–90.

    Article  CAS  Google Scholar 

  29. L. Yuan, J. Shen, Z. Chen and X. Guan, Role of Fe/pumice composition and structure in promoting ozonation reactions, Appl. Catal., B, 2016, 180, 707–714.

    Article  CAS  Google Scholar 

  30. Y. Ren, Y. Chen, T. Zeng, J. Feng, J. Ma and W. A. Mitch, Influence of Bi-doping on Mn1–xBixFe2O4 catalytic ozonation of di-n-butyl phthalate, Chem. Eng. J., 2016, 283, 622–630.

    Article  CAS  Google Scholar 

  31. Q. Dai, J. Wang, J. Yu, J. Chen, J. Wang and J. Chen, Catalytic ozonation for the degradation of acetylsalicylic acid in aqueous solution by magnetic CeO2 nanometer catalyst particles, Appl. Catal., B, 2014, 144, 686–693.

    Article  CAS  Google Scholar 

  32. K. H. Hama Aziz, H. Miessner, S. Mueller, D. Kalass, D. Moeller, I. Khorshid and M. A. M. Rashid, Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and non-thermal plasma, Chem. Eng. J., 2017, 313, 1033–1041.

    Article  CAS  Google Scholar 

  33. G. Gao, J. Shen, W. Chu, Z. Chen and L. Yuan, Mechanism of enhanced diclofenac mineralization by catalytic ozonation over iron silicate-loaded pumice, Sep. Purif. Technol., 2017, 173, 55–62.

    Article  CAS  Google Scholar 

  34. F. J. Beltrán, P. Pocostales, P. Alvarez and A. Oropesa, Diclofenac removal from water with ozone and activated carbon, J. Hazard. Mater., 2009, 163, 768–776.

    Article  PubMed  CAS  Google Scholar 

  35. N. F. F. Moreira, C. A. Orge, A. R. Ribeiro, J. L. Faria, O. C. Nunes, M. F. R. Pereira and A. M. T. Silva, Fast mineralization and detoxification of amoxicillin and diclofenac by photocatalytic ozonation and application to an urban wastewater, Water Res., 2015, 87, 87–96.

    Article  CAS  PubMed  Google Scholar 

  36. Y. Jung, E. Hong, M. Kwon and J. W. Kang, A kinetic study of ozone decay and bromine formation in saltwater ozonation: Effect of O3dose, salinity, pH, and temperature, Chem. Eng. J., 2017, 312, 30–38.

    Article  CAS  Google Scholar 

  37. F. J. Beltrán, Ozone Reaction Kinetics for Water and Wastewater Systems, CRC Press, London, 1st edn, 2003.

  38. M. M. Huber, S. Canonica, G. Y. Park and U. Von Gunten, Oxidation of pharmaceuticals during ozonation and advanced oxidation processes, Environ. Sci. Technol., 2003, 37, 1016–1024.

    Article  CAS  PubMed  Google Scholar 

  39. M. Saquib Hasnain, P. Rishishwar, S. Rishishwar, S. Ali and A. K. Nayak, Isolation and characterization of Linum usitatisimum polysaccharide to prepare mucoadhesive beads of diclofenac sodium, Int. J. Biol. Macromol., 2018, 116, 162–172.

    Article  CAS  PubMed  Google Scholar 

  40. G. N. Lucena, R. C. Alves, M. P. Abuçafy, L. A. Chiavacci, I. C. da Silva, F. R. Pavan and R. C. G. Frem, Zn-based porous coordination solid as diclofenac sodium carrier, J. Solid State Chem., 2018, 260, 67–72.

    Article  CAS  Google Scholar 

  41. M. D. G. De Luna, Murniati, W. Budianta, K. K. P. Rivera and R. O. Arazo, Removal of sodium diclofenac from aqueous solution by adsorbents derived from cocoa pod husks, J. Environ. Chem. Eng., 2017, 5, 1465–1474.

    Article  CAS  Google Scholar 

  42. K. S. Finnie, D. J. Cassidy, J. R. Bartlett and J. L. Woolfrey, IR spectroscopy of surface water and hydroxyl species on nanocrystalline TiO2 films, Langmuir, 2001, 17, 816–820.

    Article  CAS  Google Scholar 

  43. A. Hassani, A. Khataee, S. Karaca and M. Fathinia, Heterogeneous photocatalytic ozonation of ciprofloxacin using synthesized titanium dioxide nanoparticles on a montmorillonite support: Parametric studies, mechanistic analysis and intermediates identification, RSC Adv., 2016, 6, 87569–87583.

    Article  CAS  Google Scholar 

  44. A. Khataee, T. S. Rad and M. Fathinia, The role of clinoptilolite nanosheets in catalytic ozonation process: Insights into the degradation mechanism, kinetics and the toxicity, J. Taiwan Inst. Chem. Eng., 2017, 77, 205–215.

    Article  CAS  Google Scholar 

  45. J. F. García-Araya, F. J. Beltrán and A. Aguinaco, Diclofenac removal from water by ozone and photolytic TiO2 catalysed processes, J. Chem. Technol. Biotechnol., 2010, 85, 798–804.

    Article  CAS  Google Scholar 

  46. X. Li, W. Chen, Y. Tang and L. Li, Relationship between the structure of Fe-MCM-48 and its activity in catalytic ozonation for diclofenac mineralization, Chemosphere, 2018, 206, 615–621.

    Article  CAS  PubMed  Google Scholar 

  47. K. Hikmat, H. Aziz, H. Miessner, S. Mueller, D. Kalass, D. Moeller, I. Khorshid, M. Amin and M. Rashid, Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and non-thermal plasma, Chem. Eng. J., 2017, 313, 1033–1041.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiderman Machuca-Martínez.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c8pp00308d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lara-Ramos, J.A., Sánchez-Gómez, K., Valencia-Rincón, D. et al. Intensification of the O3/TiO2/UV advanced oxidation process using a modified flotation cell. Photochem Photobiol Sci 18, 920–928 (2019). https://doi.org/10.1039/c8pp00308d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00308d

Navigation