Skip to main content
Log in

Photocatalytic inactivation of bioaerosols in a fixed-bed reactor with TiO2-coated glass rings

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photocatalytic inactivation of Bacillus subtilis spores in air was evaluated employing a fixed-bed reactor with TiO2-coated glass rings, under artificial UV-A radiation. Calculations of the radiation effectively absorbed inside the reactor were carried out by Monte Carlo simulations. The photocatalytic inactivation was assessed by analyzing the viability of the microorganisms retained by the coated glass rings inside the reactor at different irradiation periods. The initial concentration of the spores was reduced by almost 55% at the end of the experiment (12 h). Complementary assays were carried out employing Bacillus subtilis vegetative cells, obtaining a reduction of more than 96% under the same conditions. Two efficiency parameters were computed to assess the reactor performance: the photonic efficiency and the quantum efficiency of inactivation. Results of the efficiency parameters allow an objective comparison of the reactor performance under different experimental conditions and configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. B. Ghosh, H. Lal and A. Srivastava, Review of bioaerosols in indoor environment with special reference to sampling, analysis and control mechanisms, Environ. Int., 2015, 85, 254.

    Article  Google Scholar 

  2. M. K. Ijaz, B. Zargar, K. E. Wright, J. R. Rubino and S. A. Sattar, Generic aspects of the airborne spread of human pathogens indoors and emerging air decontamination technologies, Am. J. Infect. Control, 2016, 44, 109.

    Article  Google Scholar 

  3. M. T. Madigan, J. M. Martinko and J. Parker, Brock, Biology of Microorganisms, Pearson Prentice Hall Inc., New Jersey, USA, 2003.

  4. A. Vorontsov, in Photocatalysis Applications, ed. D. D. Dionysiou, G. Li Puma, J. Ye, J. Schneider and D. Bahnemann, RSC Energy and Environment, CPI Group (UK) Ltd, United Kingdom, 2013, ch. 7, pp. 174–203.

  5. H. M. Yadav, J.-S. Kim and S. H. Pawar, Developments in photocatalytic antibacterial activity of nano TiO2: A review, Korean J. Chem. Eng., 2016, 33, 1989.

    Article  CAS  Google Scholar 

  6. A. Pal, S. O. Pehkonen, L. E. Yu and M. B. Ray, Photocatalytic Inactivation of Airborne Bacteria in a Continuous-Flow Reactor, Ind. Eng. Chem. Res., 2008, 47, 7580.

    Article  CAS  Google Scholar 

  7. S. Pigeot-Remy, J. C. Lazzaroni, F. Simonet, P. Petinga, C. Vallet, P. Petit, P. J. Vialle and C. Guillard, Survival of bioaerosols in HVAC system photocatalytic filters, Appl. Catal., B, 2014, 144, 654.

    Article  CAS  Google Scholar 

  8. K. Sungkajuntranon, P. Sribenjalux, S. Supothina and P. Chuaybamroong, Effect of binders on airborne microorganism inactivation using TiO2 photocatalytic fluorescent lamps, J. Photochem. Photobiol., B, 2014, 138, 160.

    Article  CAS  Google Scholar 

  9. L. Gorvel, M. Yver, E. Robert, M. Harmant, M. Rosa-Calatrava, B. Lina, J. P. Gorvel, V. Moulès, R. Albalate and C. Gaüzère, Innovative Germicidal UV and Photocatalytic System Dedicated to Aircraft Cabin Eliminates Volatile Organic Compounds and Pathogenic Micro-Organisms, Clean: Soil, Air, Water, 2014, 42, 703.

    CAS  Google Scholar 

  10. Y. Zhao, A. J. A. Aarnink and H. Xin, Inactivation of airborne Enterococcus faecalis and infectious bursal disease virus using a pilot-scale ultraviolet photocatalytic oxidation scrubber, J. Air Waste Manage. Assoc., 2014, 64, 38.

    CAS  Google Scholar 

  11. T. Daikoku, M. Takemoto, Y. Yoshida, T. Okuda, Y. Takahashi, K. Ota, F. Tokuoka, A. T. Kawaguchi and K. Shiraki, Decomposition of Organic Chemicals in the Air and Inactivation of Aerosol- Associated Influenza Infectivity by Photocatalysis, Aerosol Air Qual. Res., 2015, 15, 1469.

    Article  CAS  Google Scholar 

  12. C. Rodrigues-Silva, S. M. Miranda, F. V. S. Lopes, M. Silva, M. Dezotti, A. M. T. Silva, J. L. Faria, R. A. R. Boaventura, V. J. P. Vilar and E. Pinto, Bacteria and fungi inactivation by photocatalysis under UVA irradiation: liquid and gas phase, Environ. Sci. Pollut. Res., 2017, 24, 6372.

    Article  CAS  Google Scholar 

  13. N. Doss, G. Carré, V. Keller, P. André and N. Keller, Photocatalytic Decontamination of Airborne T2 Bacteriophage Viruses in a Small-Size TiO2/β-SiC Alveolar Foam LED Reactor, Water, Air, Soil Pollut., 2018, 229, 29.

    Article  Google Scholar 

  14. E. J. Wolfrum, J. Huang, D. M. Blake, P.-C. Maness, Z. Huang and J. Fiest, Photocatalytic Oxidation of Bacteria, Bacterial and Fungal Spores, and Model Biofilm Components to Carbon Dioxide on Titanium Dioxide-Coated Surfaces, Environ. Sci. Technol., 2002, 36, 3412.

    Article  CAS  Google Scholar 

  15. S. Josset, J. Taranto, N. Keller, V. Keller and M.-C. Lett, Photocatalytic Treatment of Bioaerosols: Impact of the Reactor Design, Environ. Sci. Technol., 2010, 44, 2605.

    Article  CAS  Google Scholar 

  16. A. Vohra, D. Y. Goswami, D. A. Deshpande and S. S. Block, Enhanced photocatalytic disinfection of indoor air, Appl. Catal., B, 2006, 65, 57.

    Article  Google Scholar 

  17. H. Ren, P. Koshy, W.-F. Chen, S. Qi and C. C. Sorrell, Photocatalytic materials and technologies for air purification, J. Hazard. Mater., 2017, 325, 340.

    Article  CAS  Google Scholar 

  18. H. de Lasa, B. Serrano and M. Salaices, Photocatalytic reaction engineering, Springer Publishing, New York, USA, 2005. ISBN 978-0-387-27591-8.

  19. J. Marugán, R. van Grieken, C. Pablos, M. L. Satuf, A. E. Cassano and O. M. Alfano, Photocatalytic inactivation of Escherichia coli aqueous suspensions in a fixed-bed reactor, Catal. Today, 2015, 252, 143.

    Google Scholar 

  20. M. Briggiler Marcó, A. L. Quiberoni, A. C. Negro, J. A. Reinheimer and O. M. Alfano, Evaluation of the photo-catalytic inactivation efficiency of dairy bacteriophages, Chem. Eng. J., 2011, 172, 987.

    Article  Google Scholar 

  21. S. M. Zacarías, M. L. Satuf, M. C. Vaccari and O. M. Alfano, Efficiency Evaluation of Different TiO2 Coatings on the Photocatalytic Inactivation of Airborne Bacterial Spores, Ind. Eng. Chem. Res., 2012, 51, 13599.

    Article  Google Scholar 

  22. S. M. Zacarías, M. L. Satuf, M. C. Vaccari and O. M. Alfano, Photocatalytic inactivation of bacterial spores using TiO2 films with silver deposits, Chem. Eng. J., 2015, 266, 133.

    Article  Google Scholar 

  23. A. Manassero, M. L. Satuf and O. M. Alfano, Photocatalytic reactors with suspended and immobilized TiO2: Comparative efficiency evaluation, Environ. Sci. Pollut. Res., 2017, 24, 6031.

    Article  CAS  Google Scholar 

  24. T. E. Shehata and E. B. Collins, Sporulation and Heat Resistance of Psychrophilic Strains of Bacillus, J. Dairy Sci., 1972, 55, 1405.

    Article  Google Scholar 

  25. R. van Grieken, J. Marugán, C. Sordo and C. Pablos, Comparison of the photocatalytic disinfection of E. coli suspensions in slurry, wall and fixed-bed reactors, Catal. Today, 2009, 144, 48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia M. Zacarías.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c8pp00297e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zacarías, S.M., Pirola, S., Manassero, A. et al. Photocatalytic inactivation of bioaerosols in a fixed-bed reactor with TiO2-coated glass rings. Photochem Photobiol Sci 18, 884–890 (2019). https://doi.org/10.1039/c8pp00297e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00297e

Navigation