Skip to main content
Log in

New perspectives on aryl azide noncanonical amino acid use in yeast

  • TECHNICAL NOTE
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A photochemically chemically active noncanonical amino acid para-azido-L-phenylalanine widely used in biology was found to be metabolized by Saccharomyces cerevisiae. Contrary to multiple reports, the azide moiety is not reduced to the corresponding amine. The amino acid's concentration was found to decline somewhat with time which was due, at least in part, to modification of the amino acid side chain. The metabolite was found to be photochemically active and further characterization concluded the azide moiety was still intact. This work also goes onto highlight paramount areas of concern with regards to (photo)chemical compatibility, handling, and fidelity in genetically encoding aryl azide amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. C. Liu and P. G. Schultz, Annu. Rev. Biochem., 2010, 79, 413–444.

    Article  CAS  PubMed  Google Scholar 

  2. E. A. Rodriguez, H. A. Lester and D. A. Dougherty, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 8650–8655.

    Article  CAS  Google Scholar 

  3. S. Lepthien, L. Merkel and N. Budisa, Angew. Chem., Int. Ed., 2010, 49, 5446–5450.

    Article  CAS  Google Scholar 

  4. R. Furter, Protein Sci., 1998, 7, 419–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. J. W. Chin, T. A. Cropp, J. C. Anderson, M. Mukherji, Z. W. Zhang and P. G. Schultz, Science, 2003, 301, 964–967.

    Article  CAS  PubMed  Google Scholar 

  6. B. Wiltschi, W. Wenger, S. Nehring and N. Budisa, Yeast, 2008, 25, 775–786.

    Article  CAS  PubMed  Google Scholar 

  7. M. W. Nowak, P. C. Kearney, J. R. Sampson, M. E. Saks, C. G. Labarca, S. K. Silverman, W. Zhong, J. Thorson, J. N. Abelson, N. Davidson, {etet al.}, Science, 1995, 268, 439–442.

    Article  CAS  PubMed  Google Scholar 

  8. T. Mukai, M. Wakiyama, K. Sakamoto and S. Yokoyama, Protein Sci., 2010, 19, 440–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. W. Liu, A. Brock, S. Chen and P. G. Schultz, Nat. Methods, 2007, 4, 239–244.

    Article  CAS  PubMed  Google Scholar 

  10. B. Shen, Z. Xiang, B. Miller, G. Louie, W. Wang, J. P. Noel, F. H. Gage and L. Wang, Stem Cells, 2011, 29, 1231–1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. A. K. Antonczak, Z. Simova, I. T. Yonemoto, M. Bochtler, A. Piasecka, H. Czapinska, A. Brancale and E. M. Tippmann, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 1320–1325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D. Liu and P. Schultz, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 4780–4785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. Ye, T. Huber, R. Vogel and T. P. Sakmar, Nat. Chem. Biol., 2009, 5, 397–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J. Chin, S. Santoro, A. Martin, D. King, L. Wang and P. Schultz, J. Am. Chem. Soc., 2002, 124, 9026–9027.

    Article  CAS  PubMed  Google Scholar 

  15. N. Shao, N. S. Singh, S. E. Slade, A. M. Jones and M. K. Balasubramanian, Sci. Rep., 2015, 5, 17196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Palzer, Y. Bantel, F. Kazenwadel, M. Berg, S. Rupp and K. Sohn, Eukaryotic Cell, 2013, 12, 816–827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M. Berg, A. Michalowski, S. Palzer, S. Rupp and K. Sohn, PLoS One, 2014, 9, e89436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. A. Deiters, T. Cropp, D. Summerer, M. Mukherji and P. Schultz, Bioorg. Med. Chem. Lett., 2004, 14, 5743–5745.

    Article  CAS  PubMed  Google Scholar 

  19. A. Deiters, T. A. Cropp, M. Mukherji, J. W. Chin, J. C. Anderson and P. G. Schultz, J. Am. Chem. Soc., 2003, 125, 11782–11783.

    Article  CAS  PubMed  Google Scholar 

  20. A. Kamal, Y. Damayanthi, B. S. Narayan Reddy, B. Lakminarayana and B. S. Praveen Reddy, Chem. Commun., 1997, 1015–1016.

    Google Scholar 

  21. M. Baruah, A. Boruah, D. Prajapati and J. S. Sandhu, Synlett, 1996, 1193–1194.

    Google Scholar 

  22. J. L. Morris, S. C. Reddington, D. M. Murphy, D. D. Jones, J. A. Platts and E. M. Tippmann, Org. Lett., 2013, 15, 728–731.

    Article  CAS  PubMed  Google Scholar 

  23. J. R. Dickinson, L. E. Salgado and M. J. Hewlins, J. Biol. Chem., 2003, 278, 8028–8034.

    Article  CAS  PubMed  Google Scholar 

  24. T. Vannelli, W. Wei Qi, J. Sweigard, A. A. Gatenby and F. S. Sariaslani, Metab. Eng., 2007, 9, 142–151.

    Article  CAS  PubMed  Google Scholar 

  25. Q. Liu and Y. Tor, Org. Lett., 2003, 5, 2571–2572.

    Article  CAS  PubMed  Google Scholar 

  26. J. R. Dickinson, L. Eshantha, J. Salgado and M. J. E. Hewlins, J. Biol. Chem., 2003, 278, 8028–8034.

    Article  CAS  PubMed  Google Scholar 

  27. Y. Y. Chen, A. S. Kamlet, J. B. Steinman and D. R. Liu, Nat. Chem., 2011, 3, 146–153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. J. A. Barnett, Yeast, 2008, 25, 689–731.

    Article  CAS  PubMed  Google Scholar 

  29. B. Wiltschi, Fungal Genet. Biol., 2016, 89, 137–156.

    Article  CAS  PubMed  Google Scholar 

  30. E. M. Tippmann, W. Liu, D. Summerer, A. V. Mack and P. G. Schultz, ChemBioChem, 2007, 8, 2210–2214.

    Article  CAS  PubMed  Google Scholar 

  31. M. S. Platz, Acc. Chem. Res., 1995, 28, 487–492.

    Article  CAS  Google Scholar 

  32. K. L. Buchmueller, B. T. Hill, M. S. Platz and K. M. Weeks, J. Am. Chem. Soc., 2003, 125, 10850–10861.

    Article  CAS  PubMed  Google Scholar 

  33. W. T. Borden, N. P. Gritsan, C. M. Hadad, W. L. Karney, C. R. Kemnitz and M. S. Platz, Acc. Chem. Res., 2000, 33, 765–771.

    Article  CAS  PubMed  Google Scholar 

  34. J. Sankaranarayanan, S. Rajam, C. M. Hadad and A. D. Gudmundsdottir, J. Phys. Org. Chem., 2010, 23, 370–375.

    Article  CAS  Google Scholar 

  35. A. M. Hartley, H. L. Worthy, S. C. Reddington, P. J. Rizkallah and D. D. Jones, Chem. Sci., 2016, 7, 6484–6491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. L. Wang, J. Xie, A. A. Deniz and P. G. Schultz, J. Org. Chem., 2003, 68, 174–176.

    Article  CAS  PubMed  Google Scholar 

  37. N. J. Rau, E. A. Welles and P. G. Wenthold, J. Am. Chem. Soc., 2013, 135, 683–690.

    Article  CAS  PubMed  Google Scholar 

  38. T. Hosoya, T. Hiramatsu, T. Ikemoto, M. Nakanishi, H. Aoyama, A. Hosoya, T. Iwata, K. Maruyama, M. Endo and M. Suzuki, Org. Biol. Chem., 2004, 2, 637–641.

    Article  CAS  Google Scholar 

  39. C. G. Bazewicz, M. T. Liskov, K. J. Hines and S. H. Brewer, J. Phys. Chem. B, 2013, 117, 8987–8993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. E. S. Zimmerman, T. H. Heibeck, A. Gill, X. Li, C. J. Murray, M. R. Madlansacay, C. Tran, N. T. Uter, G. Yin, P. J. Rivers, A. Y. Yam, W. D. Wang, A. R. Steiner, S. U. Bajad, K. Penta, W. Yang, T. J. Hallam, C. D. Thanos and A. K. Sato, Bioconjugate Chem., 2014, 25, 351–361.

    Article  CAS  Google Scholar 

  41. S. Nehring, N. Budisa and B. Wiltschi, PLoS One, 2012, 7, e31992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. Amiram, A. D. Haimovich, C. Fan, Y. S. Wang, H. R. Aerni, I. Ntai, D. W. Moonan, N. J. Ma, A. J. Rovner, S. H. Hong, N. L. Kelleher, A. L. Goodman, M. C. Jewett, D. Soll, J. Rinehart and F. J. Isaacs, Nat. Biotechnol., 2015, 33, 1272–1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. C. J. Pickens, S. N. Johnson, M. M. Pressnall, M. A. Leon and C. J. Berkland, Bioconjugate Chem., 2018, 29, 686–701.

    Article  CAS  Google Scholar 

  44. A. K. Antonczak, Z. Simova and E. M. Tippmann, J. Biol. Chem., 2009, 284, 28795–28800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. M. B. Richardson, D. B. Brown, C. A. Vasquez, J. W. Ziller, K. M. Johnston and G. A. Weiss, J. Org. Chem., 2018, 83, 4525–4536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author appreciates Indiana-Purdue University Fort Wayne for financial assistance. The author also thanks Kelsie Hilarie, and Carol Goss for technical assistance and Michael Hall, Madison Sido, and Jimmy Nguyen for a critical reading of manuscript drafts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric M. Tippmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tippmann, E.M., Culpepper, S., Bunnel, W. et al. New perspectives on aryl azide noncanonical amino acid use in yeast. Photochem Photobiol Sci 18, 253–258 (2019). https://doi.org/10.1039/c8pp00243f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00243f

Navigation