Skip to main content

Advertisement

Log in

High-performance Förster resonance energy transfer-based dye-sensitized photocatalytic H2 evolution with graphene quantum dots as the homogeneous energy donor

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A high-performance dye-sensitized photocatalytic H2 evolution system was developed based on Förster resonance energy transfer (FRET) by employing water-soluble and highly photoluminescent N,S codoped graphene quantum dots (NSGQDs) as the homogeneous energy donor, erythrosin B (ErB) as the sensentizing dye, and platinum nanoparticles (Pt NPs) as the catalyst. NSGQDs absorbed high-energy photons that undergo FRET to transfer the excitation energy to the sensitizing ErB for maximizing light absorption and also served as an electron transfer and loading matrix of Pt NPs for accelarating the electron transfer; as a result, the ErB-sensitized NSGQD-Pt system afforded much higher H2 evolution activity than the NSGQD-free dye-sensitized system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) K. Kalyanasundaram, J. Kiwi, M. Grätzel, Helv. Chim. Acta, 1978, 61, 2720; (b) A. J. Bard, M. A. Fox, Acc. Chem. Res., 1995, 28, 141; (c) A. J. Esswein, D. G. Nocera, Chem. Rev., 2007, 107, 4022; (d) W. J. Youngblood, S.-H. A. Lee, K. Maeda, T. E. Mallouk, Acc. Chem. Res., 2009, 42, 1966; (e) X. Chen, S. Shen, L. Guo, S. S. Mao, Chem. Rev., 2010, 110, 6503.

    Article  CAS  Google Scholar 

  2. (a) K. Maeda, M. Eguchi, W. J. Youngblood and T. E. Mallouk, Chem. Mater., 2008, 20, 6770; (b) K. Maeda, M. Eguchi, S.-H. A. Lee, W. J. Youngblood, H. Hata, T. E. Mallouk, J. Phys. Chem. C, 2009, 113, 7962; (c) K. Maeda, G. Sahara, M. Eguchi, O. Ishitani, ACS Catal., 2015, 5, 1700; (d) X. Zhang, U. Veikko, J. Mao, P. Cai, T. Peng, Chem.–Eur. J., 2012, 18, 12103; (e) X. Zong, Y. Na, F. Wen, G. Ma, J. Yang, D. Wang, Y. Ma, M. Wang, L. Sun, C. Li, Chem. Commun., 2009, 4536; (f) Y. G. Lei, M. Q. Yang, J. H. Hou, F. Wang, E. T. Cui, C. Kong, S. X. Min, Chem. Commun., 2018, 54, 603.

    Article  CAS  Google Scholar 

  3. (a) T. Shimidzu, T. Iyoda and Y. Koide, J. Am. Chem. Soc., 1985, 107, 35; (b) T. Lazarides, T. McCormick, P. W. Du, G. G. Luo, B. Lindley, R. Eisenberg, J. Am. Chem. Soc., 2009, 131, 9192; (c) W. Zhang, J. D. Hong, J. W. Zheng, Z. Y. Huang, J. R. Zhou, R. Xu, J. Am. Chem. Soc., 2011, 133, 20680; (d) S. X. Min, G. X. Lu, J. Phys. Chem. C, 2011, 115, 13938; (e) J. Dong, M. Wang, P. Zhang, S. Yang, J. Liu, X. Li, L. Sun, J. Phys. Chem. C, 2011, 115, 15089; (f) Z. Han, W. R. McNamara, M.-S. Eum, P. L. Holland, R. Eisenberg, Angew. Chem., Int. Ed., 2012, 51, 1667; (g) X. Zong, Z. Xing, H. Yu, Y. Bai, G. Lu, L. Wang, J. Catal., 2014, 310, 51.

    Article  CAS  Google Scholar 

  4. (a) J. N. Clifford, E. Palomares, M. K. Nazeeruddin, R. Thampi, M. Grätzel and J. R. Durrant, J. Am. Chem. Soc., 2004, 126, 5670; (b) J. J. Cid, J. H. Yum, S. R. Jang, M. K. Nazeeruddin, E. Martinez-Ferrero, E. Palomares, J. Ko, M. Grätzel, T. Torres, Angew. Chem., Int. Ed., 2007, 46, 8358; (c) H. Choi, S. Kim, S. O. Kang, J. Ko, M.-S. Kang, J. N. Clifford, A. Forneli, E. Palomares, M. K. Nazeeruddin, M. Grätzel, Angew. Chem., Int. Ed., 2008, 47, 8259; (d) A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Grätzel, Science, 2011, 334, 629.

    Article  CAS  Google Scholar 

  5. (a) S. X. Min and G. X. Lu, Int. J. Hydrogen Energy, 2012, 37, 10564; (b) X. H. Zhang, B. S. Peng, T. Y. Peng, L. J. Yu, R. J. Li, J. Zhang, J. Power Sources, 2015, 298, 30; (c) X. H. Zhang, T. Y. Peng, L. J. Yu, R. J. Li, Q. Q. Li, Z. Li, ACS Catal., 2015, 5, 504; (d) Z. Li, Y. Q. Wu, G. X. Lu, Appl. Catal., B, 2016, 188, 56.

    Article  CAS  Google Scholar 

  6. (a) J.-H. Yum, B. E. Hardin, S.-J. Moon, E. Baranoff, F. Nüesch, M. D. McGehee, M. Grätzel and M. K. Nazeeruddin, Angew. Chem., Int. Ed., 2009, 48, 9277; (b) B. E. Hardin, E. T. Hoke, P. B. Armstrong, J.-H. Yum, P. Comte, T. Torres, J. M. J. Fréchet, M. K. Nazeeruddin, M. Grätzel, M. D. McGehee, Nat. Photonics, 2009, 3, 406; (c) G. K. Mor, J. Basham, M. Paulose, S. Kim, O. K. Varghese, A. Vaish, S. Yoriya, C. A. Grimes, Nano Lett., 2010, 10, 2387; (d) S. Sadhu, K. K. Haldar, A. Patra, J. Phys. Chem. C, 2010, 114, 3891; (e) J. I. Basham, G. K. Mor, C. A. Grimes, ACS Nano, 2010, 3, 1253; (f) A. Ruland, C. Schulz-Drost, V. Sgobba, D. M. Guldi, Adv. Mater., 2011, 23, 4573; (g) E. Lee, C. Kim, J. Jang, Chem.–Eur. J., 2013, 31, 10280; (h) R. Narayanan, M. Deepa, A. K. Srivastava, S. M. Shivaprasad, ChemPhysChem, 2014, 15, 1106; (i) C. Lelii, M. G. Bawendi, P. Biagini, P.-Y. Chen, M. Crucianelli, J. M. D'Arcy, F. D. Angelis, P. T. Hammond, R. Po, J. Mater. Chem. A, 2014, 2, 18375; (j) V. Dryza, E. J. Bieske, J. Phys. Chem. C, 2014, 118, 19646; (k) V. M. Blas-Ferrando, J. Ortiz, V. González-Pedro, R. S. Sánchez, I. Mora-Seró, F. Fernández-Lázaro, Á. Sastre-Santos, Adv. Funct. Mater., 2015, 21, 3220; (l) Y.-J. Lin, J.-W. Chen, P.-T. Hsiao, Y.-L. Tung, C.-C. Chang, C.-M. Chen, J. Mater. Chem. A, 2017, 5, 9081.

    Article  CAS  Google Scholar 

  7. (a) L. S. Li and X. Yan, J. Phys. Chem. Lett., 2010, 1, 2572; (b) M. Bacon, S. J. Bradley, T. Nann, Part. Part. Syst. Charact., 2014, 31, 415; (c) Z. Zhang, J. Zhang, N. Chen, L. Qu, Energy Environ. Sci., 2012, 5, 8869; (d) L. B. Tang, R. B. Ji, X. M. Li, K. S. Teng, S. P. Lau, Part. Part. Syst. Charact., 2013, 30, 523; (e) S. Kim, S. W. Hwang, M.-K. Kim, D. Y. Shin, D. H. Shin, C. O. Kim, S. B. Yang, J. H. Park, E. Hwang, S.-H. Choi, G. Ko, S. Sim, C. Sone, H. J. Choi, S. Bae, B. H. Hong, ACS Nano, 2012, 6, 8203; (f) S. N. Baker, G. A. Baker, Angew. Chem., Int. Ed., 2010, 49, 6726; (g) X. Yan, X. Cui, B. Li, L. S. Li, Nano Lett., 2010, 10, 1869.

    Article  CAS  Google Scholar 

  8. (a) J. K. Kim, M. J. Park, S. J. Kim, D. H. Wang, S. P. Cho, S. Bae, J. H. Park and B. H. Hong, ACS Nano, 2013, 7, 7207; (b) Y. Li, Y. Hu, Y. Zhao, G. Q. Shi, L. E. Deng, Y. B. Hou, L. T. Qu, Adv. Mater., 2011, 23, 776; (c) L. J. Chen, C. X. Guo, Q. M. Zhang, Y. L. Lei, J. L. Xie, S. J. Ee, G. H. Guai, Q. L. Song, C. M. Li, ACS Appl. Mater. Interfaces, 2013, 5, 2047.

    Article  CAS  Google Scholar 

  9. (a) H. Li, F. Q. Shao, H. Huang, J. J. Feng and A. J. Wang, Sens. Actuators, B, 2016, 226, 506; (b) L. Wang, Y. Wang, T. Xu, H. Liao, C. Yao, Y. Liu, Z. Li, Z. Chen, D. Pan, L. Sun, M. Wu, Nat. Commun., 2014, 5, 5357; (c) D. Qu, Z. C. Sun, M. Zheng, J. Li, Y. Q. Zhang, G. Q. Zhang, H. F. Zhao, X. Y. Liu, Z. G. Xie, Adv. Opt. Mater., 2014, 3, 360; (d) X. Miao, X. L. Yan, D. Qu, D. B. Li, F. F. Tao, Z. C. Sun, ACS Appl. Mater. Interfaces, 2017, 9, 18549.

    Article  CAS  Google Scholar 

  10. T. Forster, Discuss. Faraday Soc., 1959, 27, 7.

    Article  Google Scholar 

  11. (a) Y. J. Li, Y. P. Zhang, W. J. Xu, B. Wang and J. B. Zhang, J. Solid State Electrochem., 2017, 21, 2091; (b) W. X. Li, J. B. Zhang, Y. Y. Cao, Y. Lin, RSC Adv., 2015, 5, 10026.

    Article  CAS  Google Scholar 

  12. (a) J. Y. Xu, Y. X. Li and S. Q. Peng, Int. J. Hydrogen Energy, 2015, 40, 353; (b) J. H. Hou, Y. G. Lei, F. Wang, X. H. Ma, S. X. Min, Z. L. Jin, J. Xu, Int. J. Hydrogen Energy, 2017, 42, 11118.

    Article  CAS  Google Scholar 

  13. (a) S. J. Zhuo, M. W. Shao and S.-T. Lee, ACS Nano, 2012, 6, 1059; (b) D. Pan, C. Xi, Z. Li, L. Wang, Z. Chen, B. Lu, M. Wu, J. Mater. Chem. A, 2013, 1, 3551; (c) D. Y. Pan, J. K. Jiao, Z. Li, Y. T. Guo, C. Q. Feng, Y. Liu, L. Wang, M. H. Wu, ACS Sustainable Chem. Eng., 2015, 3, 2405; (d) K.-A. Tsai, Y.-J. Hsu, Appl. Catal., B, 2015, 164, 271; (e) S. Yu, Y.-Q. Zhong, B.-Q. Yu, S.-Y. Cai, L.-Z. Wu, Y. Zhou, Phys. Chem. Chem. Phys., 2016, 18, 20338; (f) A. L. Qu, H. L. Xie, X. M. Xu, Y. Y. Zhang, S. W. Wen, Y. F. Cui, Appl. Surf. Sci., 2016, 375, 230; (g) Y. G. Lei, C. Yang, J. H. Hou, F. Wang, S. X. Min, X. H. Ma, Z. L. Jin, J. Xu, G. X. Lu, K.-W. Huang, Appl. Catal., B, 2017, 216, 59; (h) S. X. Min, J. H. Hou, Y. G. Lei, X. H. Ma, G. X. Lu, Appl. Surf. Sci., 2017, 396, 1375; (i) F. Wang, Y. H. Su, S. X. Min, Y. N. Li, Y. G. Lei, J. H. Hou, J. Solid State Chem., 2018, 260, 23.

    Article  CAS  Google Scholar 

  14. (a) J. Huang, Y. J. Wu, D. D. Wang, Y. F. Ma, Z. K. Yue, Y. T. Lu, M. X. Zhang, Z. J. Zhang and P. Yang, ACS Appl. Mater. Interfaces, 2015, 7, 3732; (b) P. J. Yang, J. H. Zhao, J. Wang, H. J. Cui, L. Li, Z. P. Zhu, ChemPhysChem, 2015, 16, 3058; (c) M. Mahyari, Y. Bide, J. N. Gavgani, Appl. Catal., A, 2016, 517, 100.

    Article  CAS  Google Scholar 

  15. (a) K. Kalyanasundaram, J. Kiwi and M. Grätzel, Helv. Chim. Acta, 1978, 61, 2720; (b) T. Shimidzu, T. Iyoda, Y. Koide, J. Am. Chem. Soc., 1985, 107, 35.

    Article  CAS  Google Scholar 

  16. (a) A. Mills, C. Lawrence and P. Douglas, J. Chem. Soc., Faraday Trans. 1, 1986, 82, 2291; (b) X. J. Zhang, Z. L. Jin, Y. X. Li, S. B. Li, G. X. Lu, J. Phys. Chem. C, 2009, 113, 2630.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21463001, 21763001), the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (Grant No. 2017-K26), the Key Scientific Research Projects in 2017 at North Minzu University (Grant No. 2017KJ20), the Key Scientific Research Projects of the Higher Education Institutions of Ningxia Hui Autonomous Region (Grant No. NCX2017143), the Foundation of Key Laboratory of Electrochemical Energy Conversion Technology and Application, and the Foundation of Innovation Team Project of High Value Utilization of Ningxia Low-Grade Resources and Environmental-Chemical Integration Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Wang or Shixiong Min.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Y., Xue, Y., Li, Y. et al. High-performance Förster resonance energy transfer-based dye-sensitized photocatalytic H2 evolution with graphene quantum dots as the homogeneous energy donor. Photochem Photobiol Sci 17, 1147–1152 (2018). https://doi.org/10.1039/c8pp00227d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00227d

Navigation