Skip to main content
Log in

Solar UV damage to cellular DNA: from mechanisms to biological effects

  • PERSPECTIVE
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Solar ultraviolet (UV) radiation generates bulky photodimers at di-pyrimidine sites that pose stress to cells and organisms by hindering DNA replication and transcription. In addition, solar UV also induces various types of oxidative DNA lesions and single strand DNA breaks. Relieving toxicity and maintenance of genomic integrity are of clinical importance in relation to erythema/edema and diseases such as cancer, neurodegeneration and premature ageing, respectively. Following solar UV radiation, a network of DNA damage response mechanisms triggers a signal transduction cascade to regulate various genome-protection pathways including DNA damage repair, cell cycle control, apoptosis, transcription and chromatin remodeling. The effects of UVC and UVB radiation on cellular DNA are predominantly accounted for by the formation of photodimers at di-pyrimidine sites. These photodimers are mutagenic: UVC, UVB and also UVA radiation induce a broadly similar pattern of transition mutations at di-pyrimidine sites. The mutagenic potency of solar UV is counteracted by efficient repair of photodimers involving global genome nucleotide excision repair (GG-NER) and transcription-coupled nucleotide excision repair (TC-NER); the latter is a specialized repair pathway to remove transcription-blocking photodimers and restore UV-inhibited transcription. On the molecular level these processes are facilitated and regulated by various post-translational modifications of NER factors and the chromatin substrate. Inherited defects in NER are manifested in different diseases including xeroderma pigmentosum (XP), Cockayne syndrome (CS), UV sensitive syndrome (UVsS) and the photosensitive form of trichothiodystrophy (TTD). XP patients are prone to sunlight-induced skin cancer. UVB irradiated XP and CS knockout mouse models unveiled that only TC-NER counteracts erythema/edema, whereas both GG-NER and TC-NER protect against UVB-induced cancer. Additionally, UVA radiation induces mutations characterized by oxidation-linked signature at non-di-pyrimidine sites. The biological relevance of oxidation damage is demonstrated by the cancer susceptibility of UVB-irradiated mice deficient in repair of oxidation damage, i.e., 8-oxoguanine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Araujo, F. Tirode, F. Coin, H. Pospiech, J. E. Syvaoja, M. Stucki, U. Hubscher, J. M. Egly and R. D. Wood, Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK, Genes Dev., 2000, 14, 349–359.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. J. A. Marteijn, H. Lans, W. Vermeulen and J. H. Hoeijmakers, Understanding nucleotide excision repair and its roles in cancer and ageing, Nat. Rev. Mol. Cell Biol., 2014, 15, 465–481.

    Article  CAS  PubMed  Google Scholar 

  3. A. R. Lehmann, DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy, Biochimie, 2003, 85, 1101–1111.

    Article  CAS  PubMed  Google Scholar 

  4. R. Brem, M. Guven and P. Karran, Oxidatively-generated damage to DNA and proteins mediated by photosensitized UVA, Free Radicals Biol. Med., 2017, 107, 101–109.

    Article  CAS  Google Scholar 

  5. M. Guven, R. Brem, P. Macpherson, M. Peacock and P. Karran, Oxidative Damage to RPA Limits the Nucleotide Excision Repair Capacity of Human Cells, J. Invest. Dermatol., 2015, 135, 2834–2841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J. Cadet, T. Douki and J. L. Ravanat, Oxidatively generated damage to cellular DNA by UVB and UVA radiation, Photochem. Photobiol., 2015, 91, 140–155.

    Article  CAS  PubMed  Google Scholar 

  7. M. G. Vrouwe, A. Pines, R. M. Overmeer, K. Hanada and L. H. Mullenders, UV-induced photolesions elicit ATR-kinase-dependent signaling in non-cycling cells through nucleotide excision repair-dependent and -independent pathways, J. Cell Sci., 2011, 124, 435–446.

    Article  CAS  PubMed  Google Scholar 

  8. S. Hanasoge and M. Ljungman, H2AX phosphorylation after UV irradiation is triggered by DNA repair intermediates and is mediated by the ATR kinase, Carcinogenesis, 2007, 28, 2298–2304.

    Article  CAS  PubMed  Google Scholar 

  9. M. Yamaizumi and T. Sugano, UV-induced nuclear accumulation of p53 is evoked through DNA damage of actively transcribed genes independent of the cell cycle, Oncogene, 1994, 1, 2775–2784.

    Google Scholar 

  10. M. Ljungman, F. Zhang, F. Chen, A. J. Rainbow and B. C. McKay, Inhibition of RNA polymerase II as a trigger for the p53 response, Oncogene, 1999, 18, 583–592.

    Article  CAS  PubMed  Google Scholar 

  11. J. A. Marteijn, S. Bekker-Jensen, N. Mailand, H. Lans, P. Schwertman, A. M. Gourdin, N. P. Dantuma, J. Lukas and W. Vermeulen, Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response, J. Cell Biol., 2009, 186, 835–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. M. Matsumoto, K. Yaginuma, A. Igarashi, M. Imura, M. Hasegawa, K. Iwabuchi, T. Date, T. Mori, K. Ishizaki, K. Yamashita, M. Inobe and T. Matsunaga, Perturbed gapfilling synthesis in nucleotide excision repair causes histone H2AX phosphorylation in human quiescent cells, J. Cell Sci., 2007, 120, 1104–1112.

    Article  CAS  PubMed  Google Scholar 

  13. Y. Shiloh, ATM and related protein kinases: safeguarding genome integrity, Nat. Rev. Cancer, 2003, 3, 155–168.

    Article  CAS  PubMed  Google Scholar 

  14. S. Bergink, F. A. Salomons, D. Hoogstraten, T. A. Groothuis, H. de Waard, J. Wu, L. Yuan, E. Citterio, A. B. Houtsmuller, J. Neefjes, J. H. Hoeijmakers, W. Vermeulen and N. P. Dantuma, DNA damage triggers nucleotide excision repair-dependent monoubiquitylation of histone H2A, Genes Dev., 2006, 15, 1343–1352.

    Article  CAS  Google Scholar 

  15. R. M. Overmeer, A. M. Gourdin, A. Giglia-Mari, H. Kool, A. B. Houtsmuller, G. Siegal, M. I. Fousteri, L. H. Mullenders and W. Vermeulen, Replication factor C recruits DNA polymerase delta to sites of nucleotide excision repair but is not required for PCNA recruitment, Mol. Cell Biol., 2010, 30, 4828–4839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. D. L. Mitchell, B. Volkmer, E. W. Breitbart, M. Byrom, M. G. Lowery and R. Greinert, Identification of a non-dividing subpopulation of mouse and human epidermal cells exhibiting high levels of persistent ultraviolet photodamage, J. Invest. Dermatol., 2001, 117, 590–595.

    Article  CAS  PubMed  Google Scholar 

  17. S. Cohn, B. R. Krawisz, S. L. Dresler and M. W. Lieberman, Induction of replicative DNA synthesis in quiescent human fibroblasts by DNA damaging agents, Proc. Natl. Acad. Sci. U. S. A., 1984, 81, 4828–4832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J. G. Nijhof, A. M. Mulder, E. N. Speksnijder, E. M. Hoogervorst, L. H. Mullenders and F. R. de Gruijl, Growth stimulation of UV-induced DNA damage retaining epidermal basal cells gives rise to clusters of p53 overexpressing cells, DNA Repair, 2007, 6, 1642–1650.

    Article  CAS  PubMed  Google Scholar 

  19. F. A. Derheimer, H. M. O’Hagan, H. Krueger, S. Hanasoge, M. T. Paulsen and M. Ljungman, RPA and ATR link transcriptional stress to p53, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 12778–12783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. Ljungman, H. M. O’Hagan and M. T. Paulsen, Induction of ser15 and lys382 modifications of p53 by blockage of transcription elongation, Oncogene, 2001, 20, 5964–5971.

    Article  CAS  PubMed  Google Scholar 

  21. A. Aboussekhra, M. Biggerstaff, M. K. Shivji, J. A. Vilpo, V. Moncollin, V. N. Podust, M. Protic, U. Hubscher, J. M. Egly and R. D. Wood, Mammalian DNA nucleotide excision repair reconstituted with purified protein components, Cell, 1995, 80, 859–868.

    Article  CAS  PubMed  Google Scholar 

  22. J. Moser, H. Kool, I. Giakzidis, K. Caldecott, L. H. Mullenders and M. I. Fousteri, Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner, Mol. Cell., 2007, 27, 311–323.

    Article  CAS  PubMed  Google Scholar 

  23. M. S. Luijsterburg, G. von Bornstaedt, A. M. Gourdin, A. Z. Politi, M. J. Moné, D. O. Warmerdam, J. Goedhart, W. Vermeulen, R. van Driel and T. Höfer, Stochastic and reversible assembly of a multiprotein DNA repair complex ensures accurate target site recognition and efficient repair, J. Cell Biol., 2010, 189, 445–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. R. Nishi, S. Alekseev, C. Dinant, D. Hoogstraten, A. B. Houtsmuller, J. H. Hoeijmakers, W. Vermeulen, F. Hanaoka and K. Sugasawa, UV- DDB-dependent regulation of nucleotide excision repair kinetics in living cells, DNA Repair, 2009, 8, 767–776.

    Article  CAS  PubMed  Google Scholar 

  25. J. Moser, M. Volker, H. Kool, S. Alekseev, H. Vrieling, A. Yasui, A. A. van Zeeland and L. H. Mullenders, The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions, DNA Repair, 2005, 4, 571–582.

    Article  CAS  PubMed  Google Scholar 

  26. A. Pines, M. G. Vrouwe, J. A. Marteijn, D. Typas, M. S. Luijsterburg, M. Cansoy, P. Hensbergen, A. Deelder, A. de Groot, S. Matsumoto, K. Sugasawa, N. Thoma, W. Vermeulen, H. Vrieling and L. Mullenders, PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1, J. Cell Biol., 2012, 199, 235–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. K. Sugasawa, Y. Okuda, M. Saijo, R. Nishi, N. Matsuda, G. Chu, T. Mori, S. Iwai, K. Tanaka, K. Tanaka and F. Hanaoka, UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex, Cell, 2005, 121, 387–400.

    Article  CAS  PubMed  Google Scholar 

  28. Q. E. Wang, Q. Zhu, G. Wani, M. A. El-Mahdy, J. Li and A. A. Wani, DNA repair factor XPC is modified by SUMO-1 and ubiquitin following UV irradiation, Nucleic Acids Res., 2005, 33, 4023–4034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. R. D. Wood, S. J. Araújo, R. R. Ariza, D. P. Batty, M. Biggerstaff, E. Evans, P. H. Gaillard, D. Gunz, B. Köberle, I. Kuraoka, J. G. Moggs, J. K. Sandall and M. K. Shivji, DNA damage recognition and nucleotide excision repair in mammalian cells, Cold Spring Harbor Symp. Quant. Biol., 2000, 65, 173–182.

    Article  CAS  PubMed  Google Scholar 

  30. S. Rademakers, M. Volker, D. Hoogstraten, A. L. Nigg, M. J. Moné, A. A. Van Zeeland, J. H. Hoeijmakers, A. B. Houtsmuller and W. Vermeulen, Xeroderma pigmentosum group A protein loads as a separate factor onto DNA lesions, Mol. Cell Biol., 2003, 23, 5755–5767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. R. M. Overmeer, J. Moser, M. Volker, H. Kool, A. E. Tomkinson, A. A. van Zeeland, L. H. Mullenders and M. Fousteri, Replication protein A safeguards genome integrity by controlling NER incision events, J. Cell Biol., 2011, 192, 401–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. A. Tsaalbi-Shtylik, J. Moser, L. H. Mullenders, J. G. Jansen and N. de Wind, Persistently stalled replication forks inhibit nucleotide excision repair in trans by sequestering Replication protein A, Nucleic Acids Res., 2014, 42, 4406–4413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. M. R. Duan and M. J. Smerdon, UV damage in DNA promotes nucleosome unwrapping, J. Biol. Chem., 2010, 285, 26295–26303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. M. S. Luijsterburg, M. Lindh, K. Acs, M. G. Vrouwe, A. Pines, A. H. van, L. H. Mullenders and N. P. Dantuma, DDB2 promotes chromatin decondensation at UV-induced DNA damage, J. Cell Biol., 2012, 197, 267–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. I. Mellon, G. Spivak and P. C. Hanawalt, Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene, Cell, 1987, 51, 241–249.

    Article  CAS  PubMed  Google Scholar 

  36. J. Venema, L. H. Mullenders, A. T. Natarajan, A. A. van Zeeland and L. V. Mayne, The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA, Proc. Natl. Acad. Sci. U. S. A., 1990, 87, 4707–4711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Y. Nakazawa, K. Sasaki, N. Mitsutake, M. Matsuse, M. Shimada, T. Nardo, Y. Takahashi, K. Ohyama, K. Ito, H. Mishima, M. Nomura, A. Kinoshita, S. Ono, K. Takenaka, R. Masuyama, T. Kudo, H. Slor, A. Utani, S. Tateishi, S. Yamashita, M. Stefanini, A. R. Lehmann, K. Yoshiura and T. Ogi, Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair, Nat. Genet., 2012, 44, 586–592.

    Article  CAS  PubMed  Google Scholar 

  38. P. Schwertman, A. Lagarou, D. H. Dekkers, A. Raams, A. C. van der Hoek, C. Laffeber, J. H. Hoeijmakers, J. A. Demmers, M. Fousteri, W. Vermeulen and J. A. Marteijn, UV-sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair, Nat. Genet., 2012, 44, 598–602.

    Article  CAS  PubMed  Google Scholar 

  39. X. Zhang, K. Horibata, M. Saijo, C. Ishigami, A. Ukai, S. Kanno, H. Tahara, E. G. Neilan, M. Honma, T. Nohmi, A. Yasui and K. Tanaka, Mutations in UVSSA cause UV-sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair, Nat. Genet., 2012, 44, 593–597.

    Article  CAS  PubMed  Google Scholar 

  40. E. Citterio, V. van den Boom, G. Schnitzler, R. Kanaar, E. Bonte, R. E. Kingston, J. H. Hoeijmakers and W. Vermeulen, ATP-Dependent Chromatin Remodeling by the Cockayne Syndrome B DNA Repair-TranscriptionCoupling Factor, Mol. Cell Biol., 2000, 20, 7643–7653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. R. Groisman, J. Polanowska, I. Kuraoka, J. Sawada, M. Saijo, R. Drapkin, A. F. Kisselev, K. Tanaka and Y. Nakatani, The Ubiquitin Ligase Activity in the DDB2 and CSA Complexes is differentially regulated by the COP9 Signalosome in response to DNA Damage, Cell, 2003, 113, 357–367.

    Article  CAS  PubMed  Google Scholar 

  42. A. Pines, M. Dijk, M. Makowski, E. M. Meulenbroek, M. G. Vrouwe, Y. van der Weegen, M. Baltissen, P. J. French, M. E. van Royen, M. S. Luijsterburg, L. H. Mullenders, M. Vermeulen, W. Vermeulen, N. S. Pannu and H. van Attikum, TRiC controls transcription resumption after UV damage by regulating Cockayne syndrome protein A, Nat. Commun., 2018, 9, 1040.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. V. Van den Boom, E. Citterio, D. Hoogstraten, A. Zotter, J. M. Egly, W. A. van Cappellen, J. H. J. Hoeijmakers, A. B. Houtsmuller and W. Vermeulen, DNA damage stabilizes interaction of CSB with the transcription elongation machinery, J. Cell Biol., 2004, 166, 27–36.

    Article  PubMed  PubMed Central  Google Scholar 

  44. S. Lagerwerf, M. G. Vrouwe, R. M. Overmeer, M. I. Fousteri and L. H. Mullenders, DNA damage response and transcription, DNA Repair, 2011, 10, 743–750.

    Article  CAS  PubMed  Google Scholar 

  45. R. J. Lake and H. Y. Fan, Structure, function and regulation of CSB: a multi-talented gymnast, Mech. Ageing Dev., 2013, 134, 202–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. R. J. Lake, A. Geyko, G. Hemashettar, Y. Zhao and H. Y. Fan, UV-induced association of the CSB remodeling protein with chromatin requires ATP-dependent relief of N-terminal autorepression, Mol. Cell., 2010, 37, 235–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. M. Van Oosten, H. Rebel, E. C. Friedberg, H. van Steeg, G. T. van der Horst, H. J. van Kranen, A. Westerman, A. A. van Zeeland, L. H. Mullenders and F. R. de Gruijl, Differential role of transcription-coupled repair in UVB-induced G2 arrest and apoptosis in mouse epidermis, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 11268–11273.

    Article  PubMed  PubMed Central  Google Scholar 

  48. A. H. Sarker, S. E. Tsutakawa, S. Kostek, C. Ng, D. S. Shin, M. Peris, E. Campeau, J. A. Tainer, E. Nogales and P. K. Cooper, Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights fro transcription -coupled repair and Cockayne Syndrome, Mol. Cell, 2005, 20, 187–198.

    Article  CAS  PubMed  Google Scholar 

  49. L. Mullenders, DNA damage mediated transcription arrest: Step back to go forward, DNA Repair, 2015, 36, 28–35.

    Article  CAS  PubMed  Google Scholar 

  50. J. Xu, I. Lahiri, W. Wang, A. Wier, M. A. Cianfrocco, J. Chong, A. A. Hare, P. B. Dervan, F. DiMaio, A. E. Leschziner and D. Wang, Structural basis for the initiation of eukaryotic transcription-coupled DNA repair, Nature, 2017, 551, 653–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. L. C. Andrade-Lima, A. Veloso, M. T. Paulsen, C. F. Menck and M. Ljungman, DNA repair and recovery of RNA synthesis following exposure to ultraviolet light are delayed in long genes, Nucleic Acids Res., 2015, 43, 2744–2756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. S. Alekseev, H. Kool, H. Rebel, M. Fousteri, J. Moser, C. Backendorf, F. R. de Gruijl, H. Vrieling and L. H. Mullenders, Enhanced DDB2 expression protects mice from carcinogenic effects of chronic UV-B irradiation, Cancer Res., 2005, 65, 10298–10306.

    Article  CAS  PubMed  Google Scholar 

  53. R. J. Berg, H. Rebel, G. T. van der Horst, H. J. van Kranen, L. H. F. Mullenders, W. A. van Vloten and F. R. de Gruijl, Impact of global genome repair versus transcription-coupled repair on ultraviolet carcinogenesis in hairless mice, Cancer Res., 2000, 60, 2858–2863.

    CAS  PubMed  Google Scholar 

  54. R. J. Berg, H. J. Ruven, A. T. Sands, F. R. de Gruijl and L. H. Mullenders, Defective global genome repair in XPC mice is associated with skin cancer susceptibility but not with sensitivity to UVB induced erythema and edema, J. Invest. Dermatol., 1998, 110, 405–409.

    Article  CAS  PubMed  Google Scholar 

  55. S. Kondo, S. Fukuro, K. Nishioka and Y. Satoh, Xeroderma pigmentosum: recent clinical and photobiological aspects, J. Dermatol., 1992, 19, 690–695.

    Article  CAS  PubMed  Google Scholar 

  56. S. W. Wijnhoven, H. J. Kool, L. H. Mullenders, R. Slater, A. A. van Zeeland and H. Vrieling, DMBA-induced toxic and mutagenic responses vary dramatically between NER-deficient Xpa, Xpc and Csb mice, Carcinogenesis, 2001, 22, 1099–1106.

    Article  CAS  PubMed  Google Scholar 

  57. H. Vrieling, M. L. Van Rooijen, N. A. Groen, M. Z. Zdzienicka, J. W. Simons, P. H. Lohman and A. A. van Zeeland, DNA strand specificity for UV-induced mutations in mammalian cells, Mol. Cell Biol., 1989, 9, 1277–1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. A. A. van Zeeland, M. P. Vreeswijk, F. R. de Gruijl, H. J. van Kranen, H. Vrieling and L. F. Mullenders, Transcription-coupled repair: impact on UV-induced mutagenesis in cultured rodent cells and mouse skin tumors, Mutat. Res., 2005, 577, 170–178.

    Article  PubMed  CAS  Google Scholar 

  59. G. Hendriks, F. Calléja, A. Besaratinia, H. Vrieling, G. P. Pfeifer, L. H. Mullenders, J. G. Jansen and N. de Wind, Transcription-dependent cytosine deamination is a novel mechanism in ultraviolet light-induced mutagenesis, Curr. Biol., 2010, 20, 170–175.

    Article  CAS  PubMed  Google Scholar 

  60. H. Rebel, N. Kram, A. Westerman, S. Banus, H. J. van Kranen and F. R. de Gruijl, Relationship between UV-induced mutant p53 patches and skin tumours, analysed by mutation spectra and by induction kinetics in various DNA-repair-deficient mice, Carcinogenesis, 2005, 26, 2123–2130.

    Article  CAS  PubMed  Google Scholar 

  61. C. Masutani, R. Kusumoto, S. Iwai and F. Hanaoka, Mechanisms of accurate transle- sion synthesis by human DNA polymerase eta, EMBO J., 2000, 19, 3100–3109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. S. Tommasi, M. F. Denissenko and G. P. Pfeifer, Sunlight induces pyrimidine dimers preferentially at 5-methyl-cytosine bases, Cancer Res., 1997, 57, 4727–4730.

    CAS  PubMed  Google Scholar 

  63. R. Kanao, M. Yokoi, T. Ohkumo, Y. Sakurai, K. Dotsu, S. Kura, Y. Nakatsu, T. Tsuzuki, C. Masutani and F. Hanaoka, UV-induced mutations in epidermal cells of mice defective in DNA polymerase q and/or i, DNA Repair, 2015, 29, 139–146.

    Article  CAS  PubMed  Google Scholar 

  64. A. Spatz, G. Giglia-Mari, S. Benhamou and A. Sarasin, Association between DNA repair-deficiency and high level of p53 mutations in melanoma of Xeroderma pigmentosum, Cancer Res., 2001, 61, 2480–2486.

    CAS  PubMed  Google Scholar 

  65. D. E. Brash, UV Signature Mutations, Photochem. Photobiol., 2015, 91, 15–26.

    Article  CAS  PubMed  Google Scholar 

  66. I. C. Enninga, R. T. Groenendijk, A. R. Filon, A. A. van Zeeland and J. W. Simons, The wavelength dependence of u.v.-induced pyrimidine dimer formation, cell killing and mutation induction in human diploid skin fibroblasts, Carcinogenesis, 1986, 7, 1829–1836.

    Article  CAS  PubMed  Google Scholar 

  67. M. Kusinada, K. Sakumi, Y. Tominaga, A. Budiyanto, M. Ueda, M. Ichihashi, Y. Nakabeppu and C. Nishigori, 8-Oxogua- nine formation induced by chronic UVB exposure makes Ogg1 knockout mice susceptible to skin carcinogenesis, Cancer Res., 2005, 65, 6006–6010.

    Article  Google Scholar 

  68. A. van Schanke, G. M. van Venrooij, M. J. Jongsma, H. A. Banus, L. H. Mullenders, H. J. van Kranen and F. R. de Gruijl, Induction of nevi and skin tumors in Ink4a/Arf Xpa knockout mice by neonatal, intermittent, or chronic UVB exposures, Cancer Res., 2006, 66, 2608–2615.

    Article  PubMed  CAS  Google Scholar 

  69. A. Pines, L. Hameetman, J. de Wilde, S. Alekseev, F. R. de Gruijl, H. Vrieling and L. H. Mullenders, Enhanced global genome nucleotide excision repair reduces UV carcinogenesis and nullifies strand bias in p53 mutations in Csb-/- mice, J. Invest. Dermatol., 2010, 130, 1746–1749.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported from grants by Leiden University, Leiden University Medical Center LUMC, Netherlands Organisation for Scientific Research NWO, Dutch Cancer Society KWF, EU and l’Oreal to LM. I thank the postdoctoral and PhD students and staff members who contributed the various studies described in this paper. Particularly I would like to thank Frank de Gruijl (LUMC, the Netherlands) for the longstanding and productive collaboration and introducing me to Jan van der Leun.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon H. F. Mullenders.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mullenders, L.H.F. Solar UV damage to cellular DNA: from mechanisms to biological effects. Photochem Photobiol Sci 17, 1842–1852 (2018). https://doi.org/10.1039/c8pp00182k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00182k

Navigation