Skip to main content
Log in

Sustained production of H2O2 in alkaline water solution using borate and phosphate-modified Au/TiC2 photocatalysts

  • COMMUNICATION
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

UV irradiation of Au/TiO2 photocatalysts in the presence of borate and phosphate anions can produce H2O2 at a millimolar level in alkaline water solution. The positive effect of the anions is ascribed to the anion-mediated hole transfer from Au/TiO2 to an electron donor which thus accelerates the two-electron reduction of O2 to H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Jones, Applications of hydrogen peroxide and deriva-tives, Royal Society of Chemistry, Cambridge, 1999.

    Google Scholar 

  2. J. M. Campos-Martin, G. Blanco-Brieva and J. L. G. Fierro, Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process, Angew. Chem., Int. Ed., 2006, 45, 6962–6984.

    Article  CAS  Google Scholar 

  3. J. K. Edwards, B. Solsona, E. N. Ntainjua, A. F. Carley, A. A. Herzing, C. J. Kiely and G. J. Hutchings, Switching off hydrogen peroxide hydrogenation in the direct synthesis process, Science, 2009, 323, 1037–1041.

    Article  CAS  Google Scholar 

  4. Y. H. Yi, L. Wang, G. Li and H. C. Guo, A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: noble-metal catalytic method, fuel-cell method and plasma method, Catal. Sci. Technol., 2016, 6, 1593–1610.

    Article  CAS  Google Scholar 

  5. S. Kanungo, V. Paunovic, J. C. Schouteme and M. F. N. D'Angelo, Facile synthesis of catalytic AuPd nano-particles within capillary microreactors using polyelectro-lyte multilayers for the direct synthesis of H2O2, Nano Lett., 2017, 17, 6481–6486.

    Article  CAS  Google Scholar 

  6. D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka and T. Hirai, Photocatalytic H2O2 production from ethanol/O-2 system using TiO2 loaded with Au-Ag bimetallic alloy nanoparticles, ACS Catal., 2012, 2, 599–603.

    Article  CAS  Google Scholar 

  7. M. Teranishi, S. Naya and H. Tada, In situ liquid phase syn-thesis of hydrogen peroxide from molecular oxygen using gold nanoparticle-loaded titanium(IV) dioxide photo-catalyst, J. Am. Chem. Soc., 2010, 132, 7850–7851.

    Article  CAS  Google Scholar 

  8. G. H. Moon, W. Kim, A. D. Bokare, N. E. Sung and W. Choi, Solar production of H2O2 on reduced graphene oxide-TiO2 hybrid photocatalysts consisting of earth-abundant elements only, Energy Environ. Sci., 2014, 7, 4023–4028.

    Article  CAS  Google Scholar 

  9. M. Teranishi, R. Hoshino, S. Naya and H. Tada, Gold-nano-particle-loaded carbonate-modified titanium(IV) oxide surface: visible-light-driven formation of hydrogen peroxide from oxygen, Angew. Chem., Int. Ed., 2016, 55, 12773–12777.

    Article  CAS  Google Scholar 

  10. M. Teranishi, S. Naya and H. Tada, Temperature-and pH-dependence of hydrogen peroxide formation from mole-cular oxygen by gold nanoparticle-loaded titanium(IV) oxide photocatalyst, J. Phys. Chem. C, 2016, 120, 1083–1088.

    Article  CAS  Google Scholar 

  11. H. Kobayashi, M. Teranishi, R. Negishi, S. Naya and H. Tada, Reaction mechanism of the multiple-electron oxygen reduction reaction on the surfaces of gold and plati-num nanoparticles loaded on titanium(IV) oxide, J. Phys. Chem. Lett., 2016, 7, 5002–5007.

    Article  CAS  Google Scholar 

  12. T. Hirakawa and Y. Nosaka, Selective production of super-oxide ions and hydrogen peroxide over nitrogen-and sulfur-doped TiO(2) photocatalysts with visible light in aqueous suspension systems, J. Phys. Chem. C, 2008, 112, 15818–15823.

    Article  CAS  Google Scholar 

  13. R. X. Cai, Y. Kubota and A. Fujishima, Effect of copper ions on the formation of hydrogen peroxide from photocatalytic titanium dioxide particles, J. Catal., 2003, 219, 214–218.

    Article  CAS  Google Scholar 

  14. V. Maurino, C. Minero, G. Mariella and E. Pelizzetti, Sustained production of H2O2 on irradiated TiO2 - fluoride systems, Chem. Commun., 2005, 20, 2627–2629.

    Article  Google Scholar 

  15. Y. Shiraishi, S. Kanazawa, D. Tsukamoto, A. Shiro, Y. Sugano and T. Hirai, Selective hydrogen peroxide for-mation by titanium dioxide photocatalysis with benzylic alcohols and molecular oxygen in water, ACS Catal., 2013, 3, 2222–2227.

    Article  CAS  Google Scholar 

  16. L. Shi, L. Q. Yang, W. Zhou, Y. Y. Liu, L. S. Yin, X. Hai, H. Song and J. H. Ye, Photoassisted construction of holey defective g-C3N4 photocatalysts for efficient visible-light-driven H2O2 production, Small, 2018, 14, 1703142.

    Article  Google Scholar 

  17. Y. Zheng, Z. H. Yu, H. H. Ou, A. M. Asiri, Y. L. Chen and X. C. Wang, Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation, Adv. Funct. Mater., 2018, 28, 1705407.

    Article  Google Scholar 

  18. Y. X. Liu, F. Y. Chen, Q. Wang, J. P. Wang and J. L. Wang, Direct unassisted hydrogen peroxide generation from oxygen and water on plasmonic Ag-graphene-Cu nanosand-wich, Appl. Catal., B, 2018, 224, 940–950.

    Article  CAS  Google Scholar 

  19. N. Kaynan, B. A. Berke, O. Hazut and R. Yerushalmi, Sustainable photocatalytic production of hydrogen per-oxide from water and molecular oxygen, J. Mater. Chem. A, 2014, 2, 13822–13826.

    Article  CAS  Google Scholar 

  20. X. Z. Li, C. C. Chen and J. C. Zhao, Mechanism of photo-decomposition of H2O2 on TiO2 surfaces under visible light irradiation, Langmuir, 2001, 17, 4118–4122.

    Article  CAS  Google Scholar 

  21. C. Minero, G. Mariella, V. Maurino and E. Pelizzetti, Photocatalytic transformation of organic compounds in the presence of inorganic anions. 1. Hydroxyl-mediated and direct electron-transfer reactions of phenol on a titanium dioxide-fluoride system, Langmuir, 2000, 16, 2632–2641.

    Article  CAS  Google Scholar 

  22. H. Sheng, Q. Li, W. Ma, H. Ji, C. Chen and J. Zhao, Photocatalytic degradation of organic pollutants on surface anionized TiO2: the common effect of anions for high hole-availability by water, Appl. Catal., B, 2013, 138, 212–218.

    Article  Google Scholar 

  23. X. Zhang, X. Xiong and Y. Xu, Brookite TiO2 photocatalyzed degradation of phenol in presence of phosphate, fluoride, sulfate and borate anions, RSC Adv., 2016, 6, 61830–61836.

    Article  CAS  Google Scholar 

  24. L. Hao, X. Xiong and Y. Xu, Borate-mediated hole transfer from irradiated anatase TiO2 to phenol in aqueous solu-tion, J. Phys. Chem. C, 2015, 119, 21376–21385.

    Article  CAS  Google Scholar 

  25. X. Xiong and Y. Xu, Synergetic effect of Pt and borate on the TiO2-photocatalyzed degradation of phenol in water, J. Phys. Chem. C, 2016, 120, 3906–3912.

    Article  CAS  Google Scholar 

  26. J. Meng, X. Xiong, X. Zhang and Y. Xu, Improved photo-catalytic degradation of chlorophenol over Pt/Bi2WO6 on addition of phosphate, Appl. Surf. Sci., 2018, 439, 859–867.

    Article  CAS  Google Scholar 

  27. H. Bader, V. Sturzenegger and J. Hoigne, Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N, N-diethyl-p-phenylenediamine (DPD), Water Res., 1988, 22, 1109–1115.

    Article  CAS  Google Scholar 

  28. I. Katsounaros, W. B. Schneider, J. C. Meier, U. Benedikt, P. U. Biedermann, A. A. Auer and K. J. J. Mayrhofer, Hydrogen peroxide electrochemistry on platinum: towards understanding the oxygen reduction reaction mechanism, Phys. Chem. Chem. Phys., 2012, 14, 7384–7391.

    Article  CAS  Google Scholar 

  29. X. Xiong, X. Zhang and Y. Xu, Incorporative effect of Pt and Na2CO3 on TiO2-photocatalyzed degradation of phenol in water, J. Phys. Chem. C, 2016, 120, 25689–25696.

    Article  CAS  Google Scholar 

  30. C. M. Sanchez-Sanchez and A. J. Bard, Hydrogen peroxide production in the oxygen reduction reaction at different electrocatalysts as quantified by scanning electrochemical microscopy, Anal. Chem., 2009, 81, 8094–8100.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Creative Research Group of the National Natural Science Foundation of China (No. 21621005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, X., Zhang, X., Liu, S. et al. Sustained production of H2O2 in alkaline water solution using borate and phosphate-modified Au/TiC2 photocatalysts. Photochem Photobiol Sci 17, 1018–1022 (2018). https://doi.org/10.1039/c8pp00177d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00177d

Navigation