Skip to main content
Log in

A multifunctional selective “turn-on” fluorescent chemosensor for detection of Group IIIA ions Al3+, Ga3+ and In3+

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A versatile chemosensor 1 (E)-2-(((8-hydroxy-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)methylene)amino)-1H-benzo[de]isoquinoline-1,3(2H)-dione, based on naphthalimide and julolidine moieties, was developed for highly distinguishable and selective recognition of Group IIIA metal ions (Al3+, Ga3+ and In3+). Sensor 1 exhibited significant ‘off–on’ fluorescence responses at 488 nm in the presence of Al3+ and at 570 nm in the presence of Ga3+ and In3+. The same emission of Ga3+ and In3+ could be distinguished through different color changes (from colorless to yellow for Ga3+ and no color change for In3+). Binding constants of 1 for Ga3+ and In3+ are the highest reported to date for an organic chemosensor. A 2 : 1 binding mode between 1 with Al3+, Ga3+ and In3+ is proposed based on electrospray ionization mass spectrometry, Job plot analysis, and theoretical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kawano, T. Kadono, T. Furuichi, S. Muto, F. Lapeyrie, Aluminum-induced distortion in calcium signaling involving oxidative bursts and channel regulation in tobacco BY-2 cells, Biochem. Biophys. Res. Commun., 2003, 308, 35–42.

    Article  CAS  PubMed  Google Scholar 

  2. S. Paul, A. Manna, S. Goswami, A differentially selective molecular probe for detection of trivalent ions (Al3+, Cr3+ and Fe3+) upon single excitation in mixed aqueous medium, Dalton Trans., 2015, 44, 11805–11810.

    Article  CAS  PubMed  Google Scholar 

  3. T. H. Y. Jeong, S. Y. Lee, J. Han, M. H. Lim, C. Kim, Thiophene and diethylaminophenol-based “turn-on” fluorescence chemosensor for detection of Al3+ and F in a near-perfect aqueous solution, Tetrahedron, 2017, 73, 2690–2697.

    Article  CAS  Google Scholar 

  4. T. G. Jo, J. J. Lee, E. Nam, K. H. Bok, M. H. Lim, C. Kim, A highly selective fluorescent sensor for the detection of Al3+ and CN in aqueous solution: biological applications and DFT calculations, New J. Chem., 2016, 40, 8918–8927.

    Article  CAS  Google Scholar 

  5. E. Delhaize, P. R. Ryan, Aluminum Toxicity and Tolerance in Plants, Plant Physiol., 1995, 107, 315–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. D. L. Godbold, E. Fritz, A. Hüttermann, Aluminum toxicity and forest decline, Proc. Natl. Acad. Sci. U. S. A., 1988, 85, 3888–3892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. L. Kang, Z.-Y. Xing, X.-Y. Ma, Y.-T. Liu, Y. Zhang, A highly selective colorimetric and fluorescent turn-on chemosensor for Al3+ based on naphthalimide derivative, Spectrochim. Acta, Part A, 2016, 167, 59–65.

    Article  CAS  Google Scholar 

  8. C. Liang, W. Bu, C. Li, G. Men, M. Deng, Y. Jiangyao, H. Sun, S. Jiang, S.-T. Lee, J. Kim, V. Marcelino, P. Paoletti, B. Valtancoli, A highly selective fluorescent sensor for Al3+ and the use of the resulting complex as a secondary sensor for PPi in aqueous media: its applicability in live cell imaging, Dalton Trans., 2015, 44, 11352–11359.

    Article  CAS  PubMed  Google Scholar 

  9. S. Goswami, S. Paul, A. Manna, Selective “naked eye” detection of Al(III) and PPi in aqueous media on a rhodamine–isatin hybrid moiety, RSC Adv., 2013, 3, 10639–10643.

    Article  CAS  Google Scholar 

  10. Y. W. Choi, G. J. Park, Y. J. Na, H. Y. Jo, S. A. Lee, G. R. You, C. Kim, A single schiff base molecule for recognizing multiple metal ions: A fluorescence sensor for Zn(II) and Al(III) and colorimetric sensor for Fe(II) and Fe(III), Sens. Actuators, B, 2014, 194, 343–352.

    Article  CAS  Google Scholar 

  11. F. Wang, H. Duan, D. Xing, G. Yang, Novel Turn-on Fluorescence Probes for Al3+ Based on Conjugated Pyrazole Schiff Base, J. Fluoresc., 2017, 27, 1721–1727.

    Article  CAS  PubMed  Google Scholar 

  12. J. Kawakami, A. Tsuiki, S. Ito, H. Kitahara, Naphthalene Ring-Fused 2-Aminotryptanthrin as a Fluorescent Chemosensor for Al3+, Trans. Mater. Res. Soc. Jpn., 2016, 41, 131–133.

    Article  CAS  Google Scholar 

  13. M. Li, X. Zhang, Y.-h. Fan, C. Bi, A novel fluorescent probe based on rhodamine hydrazone derivatives bearing a thiophene group for Al3+, Luminescence, 2016, 31, 851–855.

    Article  CAS  PubMed  Google Scholar 

  14. Q. Wang, L. Yang, H. Wang, J. Song, H. Ding, X.-H. Tang, H. Yao, A highly selective and sensitive turn-on fluorescent probe for the detection of Al3+ and its bioimaging, Luminescence, 2017, 32, 779–785.

    Article  CAS  PubMed  Google Scholar 

  15. D. Maity, T. Govindaraju, Conformationally Constrained (Coumarin−Triazolyl−Bipyridyl) Click Fluoroionophore as a Selective Al3+ Sensor, Inorg. Chem., 2010, 49, 7229–7231.

    Article  CAS  PubMed  Google Scholar 

  16. I. H. Hwang, Y. W. Choi, K. B. Kim, G. J. Park, J. J. Lee, L. Nguyen, I. Noh, C. Kim, A highly selective and sensitive fluorescent turn-on Al3+ chemosensor in aqueous media and living cells: experimental and theoretical studies, New J. Chem., 2016, 40, 171–178.

    Article  CAS  Google Scholar 

  17. P. Torawane, K. Tayade, S. Bothra, S. K. Sahoo, N. Singh, A. Borse, A. Kuwar, A highly selective and sensitive fluorescent “turn-on” chemosensor for Al3+ based on CN isomerisation mechanism with nanomolar detection, Sens. Actuators, B, 2016, 222, 562–566.

    Article  CAS  Google Scholar 

  18. F. Yu, L. J. Hou, L. Y. Qin, J. B. Chao, Y. Wang, W. J. Jin, A new colorimetric and turn-on fluorescent chemosensor for Al3+ in aqueous medium and its application in live-cell imaging, J. Photochem. Photobiol., A, 2016, 315, 8–13.

    Article  CAS  Google Scholar 

  19. C. Li, J. Qin, B. Wang, X. Bai, Z. Yang, Fluorescence chemosensor properties of two coumarin-based compounds for environmentally and biologically important Al3+ ion, J. Photochem. Photobiol., A, 2017, 332, 141–149.

    Article  CAS  Google Scholar 

  20. A. Tanaka, Toxicity of indium arsenide, gallium arsenide, and aluminium gallium arsenide, Toxicol. Appl. Pharmacol., 2004, 198, 405–411.

    Article  CAS  PubMed  Google Scholar 

  21. C. R. Chitambar, Medical Applications and Toxicities of Gallium Compounds, Int. J. Environ. Res. Public Health, 2010, 7, 2337–2361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. D. P. Kelsen, N. Alcock, S. Yeh, J. Brown, C. Young, Pharmacokinetics of gallium nitrate in man, Cancer, 1980, 46, 2009–2013.

    Article  CAS  PubMed  Google Scholar 

  23. D. Kara, A. Fisher, M. Foulkes, S. Hill, Determination of gallium at trace levels using a spectrofluorimetric method in synthetic U–Ga and Ga–As solutions, Spectrochim. Acta, Part A, 2010, 75, 361–365.

    Article  CAS  Google Scholar 

  24. H. Tavallali, P. Vahdati, E. Shaabanpur, Developing a new method of 4-(2-pyridylazo)-resorcinol immobilization on triacetylcellulose membrane for selective determination of Ga3+ in water samples, Sens. Actuators, B, 2011, 159, 154–158.

    Article  CAS  Google Scholar 

  25. L. Yan, Y. Zhou, W. Du, Z. Kong, Z. Qi, A new turn on coumarin-based fluorescence probe for Ga3+ detection in aqueous solution, Spectrochim. Acta, Part A, 2016, 155, 116–124.

    Article  CAS  Google Scholar 

  26. Z. Zeng, R. Ma, C. Liu, Y. Xu, H. Li, F. Liu, S. Sun, A crab-like fluorescent probe for Ga(III) detection in body fluids and biological tissues, Sens. Actuators, B, 2017, 250, 267–273.

    Article  CAS  Google Scholar 

  27. C. Lim, M. An, H. Seo, J. H. Huh, A. Pandith, A. Helal, H.-S. Kim, Fluorescent probe for sequential recognition of Ga3+ and pyrophosphate anions, Sens. Actuators, B, 2017, 241, 789–799.

    Article  CAS  Google Scholar 

  28. A. J. Downs, Chemistry of aluminium, gallium, indium, and thallium, Blackie Academic & Professional, 1993.

    Book  Google Scholar 

  29. D. Y. Han, J. M. Kim, J. Kim, H. S. Jung, Y. H. Lee, J. F. Zhang, J. S. Kim, ESIPT-based anthraquinonylcalix[4]crown chemosensor for In3+, Tetrahedron Lett., 2010, 51, 1947–1951.

    Article  CAS  Google Scholar 

  30. Y.-C. Wu, H.-J. Li, H.-Z. Yang, A sensitive and highly selective fluorescent sensor for In3+, Org. Biomol. Chem., 2010, 8, 3394–3397.

    Article  CAS  PubMed  Google Scholar 

  31. Y.-M. Kho, E. J. Shin, Spiropyran-Isoquinoline Dyad as a Dual Chemosensor for Co(II) and In(III) Detection, Molecules, 2017, 22, 1569–1582.

    Article  PubMed Central  CAS  Google Scholar 

  32. H. Kim, K. B. Kim, E. J. Song, I. H. Hwang, J. W. Noh, P. G. Kim, K. D. Jeong, C. Kim, Turn-on selective fluorescent probe for trivalent cations, Inorg. Chem. Commun., 2013, 36, 72–76.

    Article  CAS  Google Scholar 

  33. D. Maity, T. Govindaraju, A differentially selective sensor with fluorescence turn-on response to Zn2+ and dual-mode ratiometric response to Al3+ in aqueous media, Chem. Commun., 2012, 48, 1039–1041.

    Article  CAS  Google Scholar 

  34. G. J. Park, I. H. Hwang, E. J. Song, H. Kim, C. Kim, A colorimetric and fluorescent sensor for sequential detection of copper ion and cyanide, Tetrahedron, 2014, 70, 2822–2828.

    Article  CAS  Google Scholar 

  35. G. J. Park, G. R. You, Y. W. Choi, C. Kim, A naked-eye chemosensor for simultaneous detection of iron and copper ions and its copper complex for colorimetric/fluorescent sensing of cyanide, Sens. Actuators, B, 2016, 229, 257–271.

    Article  CAS  Google Scholar 

  36. H. Liu, B. Zhang, C. Tan, F. Liu, J. Cao, Y. Tan, Y. Jiang, Simultaneous bioimaging recognition of Al3+ and Cu2+ in living-cell, and further detection of F and S2− by a simple fluorogenic benzimidazole-based chemosensor, Talanta, 2016, 161, 309–319.

    Article  CAS  PubMed  Google Scholar 

  37. Z. Liao, Y. Liu, S.-F. Han, D. Wang, J.-Q. Zheng, X.-J. Zheng, L.-P. Jin, A novel acylhydrazone-based derivative as dual-mode chemosensor for Al3+, Zn2+ and Fe3+ and its applications in cell imaging, Sens. Actuators, B, 2017, 244, 914–921.

    Article  CAS  Google Scholar 

  38. Y. Yang, C.-Y. Gao, N. Zhang, D. Dong, Tetraphenylethene functionalized rhodamine chemosensor for Fe3+ and Cu2+ ions in aqueous media, Sens. Actuators, B, 2016, 222, 741–746.

    Article  CAS  Google Scholar 

  39. A. Roy, S. Dey, P. Roy, A ratiometric chemosensor for Al3+ based on naphthalene-quinoline conjugate with the resultant complex as secondary sensor for F: Interpretation of molecular logic gates, Sens. Actuators, B, 2016, 237, 628–642.

    Article  CAS  Google Scholar 

  40. W. Zhu, L. Yang, M. Fang, Z. Wu, Q. Zhang, F. Yin, Q. Huang, C. Li, New carbazole-based Schiff base: Colorimetric chemosensor for Fe3+ and fluorescent turn-on chemosensor for Fe3+ and Cr3+, J. Lumin., 2015, 158, 38–43.

    Article  CAS  Google Scholar 

  41. S. Goswami, K. Aich, S. Das, A. K. Das, D. Sarkar, S. Panja, T. K. Mondal, S. Mukhopadhyay, A red fluorescence “off–on” molecular switch for selective detection of Al3+, Fe3+ and Cr3+: experimental and theoretical studies along with living cell imaging, Chem. Commun., 2013, 49, 10739–10741.

    Article  CAS  Google Scholar 

  42. T. G. Jo, J. M. Jung, J. Han, M. H. Lim, C. Kim, A single fluorescent chemosensor for multiple targets of Cu2+, Fe2+/3+ and Al3+ in living cells and a near-perfect aqueous solution, RSC Adv., 2017, 7, 28723–28732.

    Article  CAS  Google Scholar 

  43. S. Goswami, A. Manna, S. Paul, A. K. Maity, P. Saha, C. K. Quah, H.-K. Fun, FRET based “red-switch” for Al3+ over ESIPT based “green-switch” for Zn2+: dual channel detection with live-cell imaging on a dyad platform, RSC Adv., 2014, 4, 34572–34576.

    Article  CAS  Google Scholar 

  44. H.-S. Kim, S. Angupillai, Y.-A. Son, A dual chemosensor for both Cu2+ and Al3+: A potential Cu2+ and Al3+ switched YES logic function with an INHIBIT logic gate and a novel solid sensor for detection and extraction of Al3+ ions from aqueous solution, Sens. Actuators, B, 2016, 222, 447–458.

    Article  CAS  Google Scholar 

  45. R. Purkait, C. Patra, A. Das Mahapatra, D. Chattopadhyay, C. Sinha, A visible light excitable chromone appended hydrazide chemosensor for sequential sensing of Al3+ and F in aqueous medium and in Vero cells, Sens. Actuators, B, 2018, 257, 545–552.

    Article  CAS  Google Scholar 

  46. M. Lo Presti, S. El Sayed, R. Martínez-Máñez, A. M. Costero, S. Gil, M. Parra, F. Sancenón, Selective chromo-fluorogenic detection of trivalent cations in aqueous environments using a dehydration reaction, New J. Chem., 2016, 40, 9042–9045.

    Article  CAS  Google Scholar 

  47. S. Y. Lee, K. H. Bok, T. G. Jo, S. Y. Kim, C. Kim, A simple Schiff-base fluorescence probe for the simultaneous detection of Ga3+ and Zn2+, Inorg. Chim. Acta, 2017, 461, 127–135.

    Article  CAS  Google Scholar 

  48. Y.-W. Wang, S.-B. Liu, W.-J. Ling, Y. Peng, A fluorescent probe for relay recognition of homocysteine and Group IIIA ions including Ga(III), Chem. Commun., 2016, 52, 827–830.

    Article  CAS  Google Scholar 

  49. B.-Y. Kim, H.-S. Kim, A. Helal, A fluorescent chemosensor for sequential recognition of gallium and hydrogen sulfate ions based on a new phenylthiazole derivative, Sens. Actuators, B, 2015, 206, 430–434.

    Article  CAS  Google Scholar 

  50. B. Tang, Z.-Z. Chen, N. Zhang, J. Zhang, Y. Wang, Synthesis and characterization of a novel cross-linking complex of β-cyclodextrin-o-vanillin furfuralhydrazone and highly selective spectrofluorimetric determination of trace gallium, Talanta, 2006, 68, 575–580.

    Article  CAS  PubMed  Google Scholar 

  51. K. Xiong, F. Huo, C. Yin, J. Chao, Y. Zhang, M. Xu, A highly selective fluorescent bioimaging probe for hypochlorite based on 1,8-naphthalimide derivative, Sens. Actuators, B, 2015, 221, 1508–1514.

    Article  CAS  Google Scholar 

  52. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT, 2009.

    Google Scholar 

  53. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648–5652.

    Article  CAS  Google Scholar 

  54. C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37, 785–789.

    Article  CAS  Google Scholar 

  55. P. C. Hariharan, J. A. Pople, The influence of polarization functions on molecular orbital hydrogenation energies, Theor. Chim. Acta, 1973, 28, 213–222.

    Article  CAS  Google Scholar 

  56. M. M. Francl, W. J. Pietro, W. J. Hehre, Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements, J. Chem. Phys., 1982, 77, 3654–3665.

    Article  CAS  Google Scholar 

  57. P. J. Hay, W. R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys., 1985, 82, 270–283.

    Article  CAS  Google Scholar 

  58. W. R. Wadt, P. J. Hay, Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi, J. Chem. Phys., 1985, 82, 284–298.

    Article  CAS  Google Scholar 

  59. P. J. Hay, W. R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, J. Chem. Phys., 1985, 82, 299–310.

    Article  CAS  Google Scholar 

  60. V. Barone, M. Cossi, Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model, J. Phys. Chem. A, 1998, 102, 1995–2001.

    Article  CAS  Google Scholar 

  61. M. Cossi, V. Barone, Time-dependent density functional theory for molecules in liquid solutions, J. Chem. Phys., 2001, 115, 4708–4717.

    Article  CAS  Google Scholar 

  62. N. M. O′boyle, A. L. Tenderholt, K. M. Langner, cclib: A library for package-independent computational chemistry algorithms, J. Comput. Chem., 2008, 29, 839–845.

    Article  PubMed  CAS  Google Scholar 

  63. P. Job, Formation and stability of inorganic complexes in solution, Ann. Chim., 1928, 9, 113–203.

    CAS  Google Scholar 

  64. R. Yang, K. Li, K. Wang, F. Zhao, N. Li, F. Liu, Porphyrin Assembly on β-Cyclodextrin for Selective Sensing and Detection of a Zinc Ion Based on the Dual Emission Fluorescence Ratio, Anal. Chem., 2003, 75, 612–621.

    Article  CAS  PubMed  Google Scholar 

  65. Y.-K. Tsui, S. Devaraj, Y.-P. Yen, Azo dyes featuring with nitrobenzoxadiazole (NBD) unit: A new selective chromogenic and fluorogenic sensor for cyanide ion, Sens. Actuators, B, 2012, 161, 510–519.

    Article  CAS  Google Scholar 

  66. J. Kimura, H. Yamada, H. Ogura, T. Yajima, T. Fukushima, Development of a fluorescent chelating ligand for gallium ion having a quinazoline structure with two Schiff base moieties, Anal. Chim. Acta, 2009, 635, 207–213.

    Article  CAS  PubMed  Google Scholar 

  67. Z. Liu, Z. Yang, T. Li, B. Wang, Y. Li, D. Qin, M. Wang, M. Yan, An effective Cu(II) quenching fluorescence sensor in aqueous solution and 1D chain coordination polymer framework, Dalton Trans., 2011, 40, 9370–9373.

    Article  CAS  PubMed  Google Scholar 

  68. Q. Mei, C. Jiang, G. Guan, K. Zhang, B. Liu, R. Liu, Z. Zhang, Fluorescent graphene oxide logic gates for discrimination of iron (3+) and iron (2+) in living cells by imaging, Chem. Commun., 2012, 48, 7468–7470.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Research Foundation of Korea Grant (NRF-2018R1A2B6001686) and the Korea Ministry of Environment (MOE) as “The Chemical Accident Prevention Technology Development Project” (no. 2016001970001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheal Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, H.J., Kang, J.H., Yun, D. et al. A multifunctional selective “turn-on” fluorescent chemosensor for detection of Group IIIA ions Al3+, Ga3+ and In3+. Photochem Photobiol Sci 17, 1247–1255 (2018). https://doi.org/10.1039/c8pp00171e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00171e

Navigation