Skip to main content
Log in

Photochemical conversion of a cytidine derivative to a thymidine analog via [2+2]-cycloaddition

  • PAPER
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Epigenetic information is encoded in the mammalian genome in the form of cytosines methylated at the 5 position. Cytosine methylation has multiple biological effects, but our understanding of these effects has lagged because extant methods for mapping methylation sites genome-wide have severe shortcomings. For instance, the gold standard bisulfite sequencing approach suffers from the use of harsh reaction conditions resulting in DNA cleavage and incomplete conversion of unmethylated cytosine to uracil. We report here on a new photochemical method in which a DNA (cytosine-5)-methyltransferase can be used to covalently attach reactive functionalities which upon irradiation at ~350 nm initiate photoinduced intramolecular reactions that convert modified C to T analogues. We synthesized a model compound, a cinna-myl ether-containing cytidine derivative, and demonstrated its conversion to a thymidine analogue using mild conditions and a DNA-compatible wavelength (~350 nm), enabled by the use of a triplet sensitizer, thioxanthone. Transfer of a cinnamyl ether or comparable reactive functionality from an AdoMet analog to cytosine followed by the use of this photoconversion method would require only small amounts of DNA and allow complete methylation profiling on both long and short read sequencing platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Goll and T. H. Bestor, Eukaryotic cytosine methyl-transferases, Amu. Rev. Biochem., 2005, 74, 481–514.

    Article  CAS  Google Scholar 

  2. Z. D. Smith and A. Meissner, DNA methylation: roles in mam-malian development, Nat. Rev. Genet., 2013, 14, 204–220.

    Article  CAS  Google Scholar 

  3. J. R. Edwards, O. Yarychkivska, M. Boulard and T. H. Bestor, DNA methylation and DNA methyl-transferases, Epigenet. Chromatin, 2017, 10, 23.

    Article  Google Scholar 

  4. E. Li, T. H. Bestor and R. Jaenisch, Targeted mutation of the DNA methyltransferase gene results in embryonic leth-ality, Cell, 1992, 69, 915–926.

    Article  CAS  Google Scholar 

  5. P. W. Laird, Principles and challenges of genome-wide DNA methylation analysis, Nat. Rev. Genet., 2010, 11, 191–203.

    Article  CAS  Google Scholar 

  6. M. J. Crookes and D. L. H. Williams, Nitrosation by alkyl nitrites. Part 2. Kinetics of reactions in aqueous acid solu-tion with isopropyl and t-butyl nitrites, J. Chem. Soc., Perkin Trans. 2, 1988, 1339–1343.

    Article  Google Scholar 

  7. D. E. Bergstrom, H. Inoue and P. A. Reddy, Pyrido[2,3-d]pyr-imidine nucleosides. Synthesis via cyclization of C-5-substi-tuted cytidines, J. Org. Chem., 1982, 47, 2174–2178.

    Article  CAS  Google Scholar 

  8. S. J. Clark, J. Harrison, C. L. Paul and M. Frommer, High sensitivity mapping of methylated cytosines, Nucleic Acids Res., 1994, 22, 2990–2997.

    Article  CAS  Google Scholar 

  9. R. Lister, M. Pelizzola, R. H. Dowen, R. D. Hawkins, G. Hon, J. Tonti-Filippini, J. R. Nery, L. Lee, Z. Ye, Q.-M. Ngo, L. Edsall, J. Antosiewicz-Bourget, R. Stewart, V. Ruotti, A. H. Millar, J. A. Thomson, B. Ren and J. R. Ecker, Human DNA methylomes at base resolution show widespread epigenomic differences, Nature, 2009, 462, 315–322.

    Article  CAS  Google Scholar 

  10. N. Haga and O. Ogura, Photocycloaddition of Cytosine and 2'-Deoxycytidines to 2,3-Dimethyl-2-butene, Heterocycles, 1993, 36, 1721–1724.

    Article  CAS  Google Scholar 

  11. T. Matsumura, M. Ogino, K. Nagayoshi and K. Fujimoto, Photochemical Site-specific Mutation of 5-Methylcytosine to Thymine, Chem. Lett., 2008, 37, 94–95.

    Article  CAS  Google Scholar 

  12. K. Fujimoto, K. Konishi-Hiratsuka, T. Sakamoto and Y. Yoshimura, Site-Specific Cytosine to Uracil Transition by Using Reversible DNA Photo-crosslinking, ChemBioChem, 2010, 11, 1661–1664.

    Article  CAS  Google Scholar 

  13. C. Dalhoff, G. Lukinavicius, S. Klimasauskas and E. Weinhold, Direct transfer of extended groups from syn-thetic cofactors by DNA methyltransferases, Nat. Chem. Biol., 2006, 2, 31–32.

    Article  CAS  Google Scholar 

  14. C. Dalhoff, G. Lukinavicius, S. Klimasauskas and E. Weinhold, Synthesis of S-adenosyl-L-methionine analogs and their use for sequence-specific transalkylation of DNA by methyltransferases, Nat. Protoc., 2006, 1, 1879–1886.

    Article  CAS  Google Scholar 

  15. E. Kriukiene, V. Labrie, T. Khare, G. Urbanaviciute, A. Lapinaite, K. Koncevicius, D. Li, T. Wang, S. Pai, C. Ptak, J. Gordevicius, S.-C. Wang, A. Petronis and S. Klimasauskas, DNA unmethylome profiling by covalent capture of CpG sites, Nat. Commun., 2013, 4, 2190.

    Article  Google Scholar 

  16. X. Allonas, C. Ley, C. Bibaut, P. Jacques and J. P. Fouassier, Investigation of the triplet quantum yield of thioxanthone by time-resolved thermal lens spectroscopy: solvent and popu-lation lens effects, Chem. Phys. Lett., 2000, 322, 483–490.

    Article  CAS  Google Scholar 

  17. M. Montalti, A. Credi, L. Prodi and M. T. Gandolfi, Handbook of Photochemistry, CRC Press LLC, Boca Raton, 3rd edn, 2006.

    Book  Google Scholar 

  18. G. C. Ferreira, C. C. Schmitt and M. G. Neumann, Dependence of the Thioxanthone Triplet-Triplet Absorption Spectrum with Solvent Polarity and Aromatic Ring Substitution, J. Braz. Chem. Soc., 2006, 17, 905–909.

    Article  CAS  Google Scholar 

  19. F. N. Ngassa, J. M. Gomez, B. E. Haines, M. J. Ostach, J. W. Hector, L. J. Hoogenboom and C. E. Page, Facile Cu-free Sonogashira cross-coupling of nucleoside C-6 arylsulfo-nates with terminal alkynes, Tetrahedron, 2010, 66, 7919–7926.

    Article  CAS  Google Scholar 

  20. Y. Yagci, S. Jockusch and N. J. Turro, Mechanism of Photoinduced Step Polymerization of Thiophene by Onium Salts: Reactions of Phenyliodinium and Diphenylsulfinium Radical Cations with Thiophene, Macromolecules, 2007, 40, 4481–4485.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (5R21HG009187-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Timothy H. Bestor or Jingyue Ju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Erturk, E., Chen, X. et al. Photochemical conversion of a cytidine derivative to a thymidine analog via [2+2]-cycloaddition. Photochem Photobiol Sci 17, 1049–1055 (2018). https://doi.org/10.1039/c8pp00161h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00161h

Navigation