Skip to main content
Log in

Insulin hexamer dissociation dynamics revealed by photoinduced T-jumps and time-resolved X-ray solution scattering

  • Communication
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The structural dynamics of insulin hexamer dissociation were studied by the photoinduced temperature jump technique and monitored by time-resolved X-ray scattering. The process of hexamer dissociation was found to involve several transient intermediates, including an expanded hexamer and an unstable tetramer. Our findings provide insights into the mechanisms of protien–protein association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. I. M. A. Nooren and J. M. Thornton, Structural characterisation and functional significance of transient protein-protein interactions, J. Mol. Biol., 2003, 325, 991–1018.

    Article  CAS  PubMed  Google Scholar 

  2. M. C. Carpenter and D. E. Wilcox, Thermodynamics of Formation of the Insulin Hexamer: Metal-Stabilized Proton-Coupled Assembly of Quaternary Structure, Biochemistry, 2014, 53, 1296–1301.

    Article  CAS  PubMed  Google Scholar 

  3. Y. Hong, L. Meng, S. Chen, C. W. T. Leung, L.-T. Da, M. Faisal, D.-A. Silva, J. Liu, J. W. Y. Lam, X. Huang and B. Z. Tang, Monitoring and Inhibition of Insulin Fibrillation by a Small Organic Fluorogen with Aggregation-Induced Emission Characteristics, J. Am. Chem. Soc., 2012, 134, 1680–1689.

    Article  CAS  PubMed  Google Scholar 

  4. J. F. Smith, T. P. J. Knowles, C. M. Dobson, C. E. MacPhee and M. E. Welland, Characterization of the nanoscale properties of individual amyloid fibrils, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 15806–15811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. G. D. Smith, W. A. Pangborn and R. H. Blessing, The structure of T 6 bovine insulin, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2005, 61, 1476–1482.

    Article  CAS  Google Scholar 

  6. Y. Xu, Y. Yan, D. Seeman, L. Sun and P. L. Dubin, Multimerization and Aggregation of Native-State Insulin: Effect of Zinc, Langmuir, 2012, 28, 579–586.

    Article  CAS  PubMed  Google Scholar 

  7. G. Dodson and D. Steiner, The role of assembly in insulin's biosynthesis., Curr. Opin. Struct. Biol., 1998, 8, 189–194.

    Article  CAS  PubMed  Google Scholar 

  8. A. Ahmad, I. S. Millett, S. Doniach, V. N. Uversky and A. L. Fink, Partially folded intermediates in insulin fibrillation, Biochemistry, 2003, 42, 11404–11416.

    Article  CAS  PubMed  Google Scholar 

  9. V. N. Uversky, L. N. Garriques, I. S. Millett, S. Frokjaer, J. Brange, S. Doniach and A. L. Fink, Prediction of the association state of insulin using spectral parameters, J. Pharm. Sci., 2003, 92, 847–858.

    Article  CAS  PubMed  Google Scholar 

  10. L. Nielsen, R. Khurana, A. Coats, S. Frokjaer, J. Brange, S. Vyas, V. N. Uversky and A. L. Fink, Effect of Environmental Factors on the Kinetics of Insulin Fibril Formation: Elucidation of the Molecular Mechanism, Biochemistry, 2001, 40, 6036–6046.

    Article  CAS  PubMed  Google Scholar 

  11. Z. Ganim, K. C. Jones and A. Tokmakoff, Insulin dimer dissociation and unfolding revealed by amide I two-dimensional infrared spectroscopy, Phys. Chem. Chem. Phys., 2010, 12, 3579–3588.

    Article  CAS  PubMed  Google Scholar 

  12. W. Bocian, J. Sitkowski, E. Bednarek, A. Tarnowska, R. Kawęcki and L. Kozerski, Structure of human insulin monomer in water/acetonitrile solution, J. Biomol. NMR, 2008, 40, 55–64.

    Article  CAS  PubMed  Google Scholar 

  13. A. K. Attri, C. Fernández and A. P. Minton, pH-dependent self-association of zinc-free insulin characterized by concentration-gradient static light scattering, Biophys. Chem., 2010, 148, 28–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. X.-X. Zhang, K. C. Jones, A. Fitzpatrick, C. S. Peng, C.-J. Feng, C. R. Baiz and A. Tokmakoff, Studying Protein–Protein Binding through T-Jump Induced Dissociation: Transient 2D IR Spectroscopy of Insulin Dimer, J. Phys. Chem. B, 2016, 120, 5134–5145.

    Article  CAS  PubMed  Google Scholar 

  15. D. Rimmerman, D. Leshchev, D. J. Hsu, J. Hong, I. Kosheleva and L. X. Chen, Direct Observation of Insulin Association Dynamics with Time-Resolved X-ray Scattering, J. Phys. Chem. Lett., 2017, 8, 4413–4418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. J. Kubelka, Time-resolved methods in biophysics. 9. Laser temperature-jump methods for investigating biomolecular dynamics, Photochem, Photobiol. Sci., 2009, 8, 499.

    Article  CAS  Google Scholar 

  17. T. Gensch and C. Viappiani,, Time-resolved photothermal methods: accessing time-resolved thermodynamics of photoinduced processes in chemistry and biology, Photochem, Photobiol. Sci., 2003, 2, 699.

    Article  CAS  Google Scholar 

  18. J. Pérez and Y. Nishino, Advances in X-ray scattering: From solution SAXS to achievements with coherent beams, Curr. Opin. Struct. Biol., 2012, 22, 670–678.

    Article  PubMed  CAS  Google Scholar 

  19. D. Sato, H. Ohtomo, Y. Yamada, T. Hikima, A. Kurobe, K. Fujiwara and M. Ikeguchi, Ferritin Assembly Revisited: A Time-Resolved Small-Angle X-ray Scattering Study, Biochemistry, 2016, 55, 287–293.

    Article  CAS  PubMed  Google Scholar 

  20. S. Akiyama, S. Takahashi, T. Kimura, K. Ishimori, I. Morishima, Y. Nishikawa and T. Fujisawa, Conformational landscape of cytochrome c folding studied by microsecond-resolved small-angle x-ray scattering., Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 1329–1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. H. S. Cho, N. Dashdorj, F. Schotte, T. Graber, R. Henning and P. Anfinrud, Protein structural dynamics in solution unveiled via 100 ps time-resolved x-ray scattering, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 7281–7286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. H. S. Cho, F. Schotte, N. Dashdorj, J. Kyndt, R. Henning and P. A. Anfinrud, Picosecond Photobiology: Watching a Signaling Protein Function in Real Time via Time-Resolved Small- and Wide-Angle X-ray Scattering, J. Am. Chem. Soc., 2016, 138, 8815–8823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. K. Y. Oang, J. G. Kim, C. Yang, T. W. Kim, Y. Kim, K. H. Kim, J. Kim and H. Ihee, Conformational Substates of Myoglobin Intermediate Resolved by Picosecond X-ray Solution Scattering, J. Phys. Chem. Lett., 2014, 5, 804–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. O. Berntsson, R. P. Diensthuber, M. R. Panman, A. Björling, E. Gustavsson, M. Hoernke, A. J. Hughes, L. Henry, S. Niebling, H. Takala, J. A. Ihalainen, G. Newby, S. Kerruth, J. Heberle, M. Liebi, A. Menzel, R. Henning, I. Kosheleva, A. Möglich and S. Westenhoff, Sequential conformational transitions and α-helical supercoiling regulate a sensor histidine kinase, Nat. Commun., 2017, 8, 284.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. O. Berntsson, R. P. Diensthuber, M. R. Panman, A. Björling, A. J. Hughes, L. Henry, S. Niebling, G. Newby, M. Liebi, A. Menzel, R. Henning, I. Kosheleva, A. Möglich and S. Westenhoff, Time-Resolved X-Ray Solution Scattering Reveals the Structural Photoactivation of a Light-Oxygen-Voltage Photoreceptor, Structure, 2017, 25, 933–938.

    Article  CAS  PubMed  Google Scholar 

  26. M. Cammarata, M. Levantino, F. Schotte, P. a. Anfinrud, F. Ewald, J. Choi, A. Cupane, M. Wulff and H. Ihee, Tracking the structural dynamics of proteins in solution using time-resolved wide-angle X-ray scattering., Nat. Methods, 2008, 5, 881–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. T. W. Kim, J. H. Lee, J. Choi, K. H. Kim, L. J. van Wilderen, L. Guerin, Y. Kim, Y. O. Jung, C. Yang, J. Kim, M. Wulff, J. J. van Thor and H. Ihee, Protein structural dynamics of photoactive yellow protein in solution revealed by pump-probe X-ray solution scattering., J. Am. Chem. Soc., 2012, 134, 3145–3153.

    Article  CAS  PubMed  Google Scholar 

  28. J. Kim, K. H. Kim, J. G. Kim, T. W. Kim, Y. Kim and H. Ihee, Anisotropic Picosecond X-ray Solution Scattering from Photoselectively Aligned Protein Molecules, J. Phys. Chem. Lett., 2011, 2, 350–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. K. H. Kim, S. Muniyappan, K. Y. Oang, J. G. Kim, S. Nozawa, T. Sato, S. Y. Koshihara, R. Henning, I. Kosheleva, H. Ki, Y. Kim, T. W. Kim, J. Kim, S. I. Adachi and H. Ihee, Direct observation of cooperative protein structural dynamics of homodimeric hemoglobin from 100 ps to 10 ms with pump-probe X-ray solution scattering, J. Am. Chem. Soc., 2012, 134, 7001–7008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. H. Ihee, Visualizing solution-phase reaction dynamics with time-resolved X-ray liquidography, Acc. Chem. Res., 2009, 42, 356–366.

    Article  CAS  PubMed  Google Scholar 

  31. D. Rimmerman, D. Leshchev, D. J. Hsu, J. Hong, B. Abraham, R. Henning, I. Kosheleva and L. X. Chen, Probing Cytochrome c Folding Transitions upon Phototriggered Environmental Perturbations Using Time-Resolved X-ray Scattering, J. Phys. Chem. B, 2018, 122, 5218–5224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. M. Cammarata, M. Lorenc, T. K. Kim, J. H. Lee, Q. Y. Kong, E. Pontecorvo, M. Lo Russo, G. Schiró, A. Cupane, M. Wulff and H. Ihee, Impulsive solvent heating probed by picosecond x-ray diffraction, J. Chem. Phys., 2006, 124, 124504.

    Article  CAS  PubMed  Google Scholar 

  33. A. G. Kikhney and D. I. Svergun, A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins, FEBS Lett., 2015, 589, 2570–2577.

    Article  CAS  PubMed  Google Scholar 

  34. E. R. Henry and J. Hofrichter, in Methods in Enzymology, Academic Press, 1992, vol. 210, pp. 129–192.

    Article  CAS  Google Scholar 

  35. M. Schmidt, S. Rajagopal, Z. Ren and K. Moffat, Application of Singular Value Decomposition to the Analysis of Time-Resolved Macromolecular X-Ray Data, Biophys. J., 2003, 84, 2112–2129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. K. Y. Oang, C. Yang, S. Muniyappan, J. Kim and H. Ihee, SVD-aided pseudo principal-component analysis: A new method to speed up and improve determination of the optimum kinetic model from time-resolved data, Struct. Dyn., 2017, 4, 44013.

    Article  CAS  Google Scholar 

  37. K. Huus, S. Havelund, H. B. Olsen, M. van de Weert and S. Frokjaer, Thermal Dissociation and Unfolding of Insulin, Biochemistry, 2005, 44, 11171–11177.

    Article  CAS  PubMed  Google Scholar 

  38. A. Ahmad, I. S. Millett, S. Doniach, V. N. Uversky and A. L. Fink, Stimulation of Insulin Fibrillation by Urea-induced Intermediates, J. Biol. Chem., 2004, 279, 14999–15013.

    Article  CAS  PubMed  Google Scholar 

  39. C. Manoharan and J. Singh, Insulin Loaded PLGA Microspheres: Effect of Zinc Salts on Encapsulation, Release, and Stability, J. Pharm. Sci., 2009, 98, 529–542.

    Article  CAS  PubMed  Google Scholar 

  40. T. Graber, S. Anderson, H. Brewer, Y. S. Chen, H. S. Cho, N. Dashdorj, R. W. Henning, I. Kosheleva, G. MacHa, M. Meron, R. Pahl, Z. Ren, S. Ruan, F. Schotte, V. Šrajer, P. J. Viccaro, F. Westferro, P. Anfinrud and K. Moffat, BioCARS: A synchrotron resource for time-resolved X-ray science, J. Synchrotron Radiat., 2011, 18, 658–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. T. S. Choi, J. W. Lee, K. S. Jin and H. I. Kim, Amyloid Fibrillation of Insulin under Water-Limited Conditions, Biophys. J., 2014, 107, 1939–1949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. S. Gianni, N. R. Guydosh, F. Khan, T. D. Caldas, U. Mayor, G. W. N. White, M. L. DeMarco, V. Daggett and A. R. Fersht, Unifying features in protein-folding mechanisms, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 13286–13291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. D. T. Leeson, F. Gai, H. M. Rodriguez, L. M. Gregoret and R. B. Dyer, Protein folding and unfolding on a complex energy landscape, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 2527–2532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. M. Gruebele, J. Sabelko, R. Ballew and J. Ervin, Laser Temperature Jump Induced Protein Refolding, Acc. Chem. Res., 1998, 31, 699–707.

    Article  CAS  Google Scholar 

  45. H. S. Chung, Z. Ganim, K. C. Jones and A. Tokmakoff, Transient 2D IR spectroscopy of ubiquitin unfolding dynamics., Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 14237–14242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. M. Gruebele, The fast protein folding problem, Annu. Rev. Phys. Chem., 1999, 50, 485–516.

    Article  CAS  PubMed  Google Scholar 

  47. A. R. Fersht and V. Daggett, Protein Folding and Unfolding at Atomic Resolution, Cell, 2002, 108, 573–582.

    Article  CAS  PubMed  Google Scholar 

  48. M. E. McCully, D. A. C. Beck and V. Daggett, Microscopic Reversibility of Protein Folding in Molecular Dynamics Simulations of the Engrailed Homeodomain, Biochemistry, 2008, 47, 7079–7089.

    Article  CAS  PubMed  Google Scholar 

  49. V. S. Pande and D. S. Rokhsar, Molecular dynamics simulations of unfolding and refolding of a beta-hairpin fragment of protein G, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 9062–9067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Health, under Contract No. R01-GM115761. B. A. acknowledges support from the U.S. Department of Energy (DOE), Office of Science Graduate Student Research program, administered by the Oak Ridge Institute for Science and Education, managed by ORAU under contract number DE-SC0014664, as well as from the U.S. DOE Office of Science, Office of Basic Energy Science, under award number DE-SC0016288. This research used resources of the APS, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Use of BioCARS was also supported by the National Institute of General Medical Sciences of the National Institutes of Health under grant number R24GM111072. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Time-resolved set-up at Sector 14 was funded in part through a collaboration with Philip Anfinrud (NIH/NIDDK). Optical equipment used for IR beam delivery at BioCARS was purchased with support from the Fraser lab at University of California San Francisco. We would also like to acknowledge Guy Macha (BioCARS) for his assistance in designing the sample holder. Portions of this work were performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located at Sector 5 of the APS. DND-CAT is supported by Northwestern University, E.I. DuPont de Nemours & Co., and The Dow Chemical Company. Data was collected using an instrument funded by the National Science Foundation under Award Number 0960140.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin X. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rimmerman, D., Leshchev, D., Hsu, D.J. et al. Insulin hexamer dissociation dynamics revealed by photoinduced T-jumps and time-resolved X-ray solution scattering. Photochem Photobiol Sci 17, 874–882 (2018). https://doi.org/10.1039/c8pp00034d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00034d

Navigation