Skip to main content
Log in

The geospatial relationship of pterygium and senile cataract with ambient solar ultraviolet in tropical Ecuador

  • PAPER
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Tropical Ecuador presents a unique climate in which we study the relationship between the ambient levels of solar ultraviolet radiation and eye disease in the absence of a latitudinal gradient. The national distribution of surface ultraviolet, taking into account MODIS and OMI satellite observation of aerosol, ozone, surface albedo, local elevation and cloud fractions measured during 2011, was compared with the national pterygium (WHO ICD H11) and senile cataract (WHO ICD H25) incidence projected from the 2010 National Institute of Statistics and Census (Ecuador). Public Health Ministry projections for age categories 0 to 39, 40 to 59 and 60+ years were compared to surface ultraviolet irradiance data in 1040 parishes. Correlations drawn between modelled surface ultraviolet and eye disease incidence show a significant increase in both pterygium and senile cataract in the highest ambient exposure regions of the Pacific coast and western lowlands with incidence rates of 34.39 and 16.17 per 100 000 residents respectively. The lowest rates of incidence for pterygium (6.89 per 100 000) and senile cataract (2.90 per 100 000) were determined in high altitude sites and are attributed here to increased daily cloud fraction for parishes located in the Andean mountain range. The South American Andes experience the highest solar UV exposures on Earth and report frequent high incidence of keratinocyte cancer. Our results show the high Andes to be the location of the lowest eye disease incidence suggesting that both pterygium and senile cataract are the result of cumulative exposure to solar ultraviolet. These findings have clear implications for the agricultural workers and fishermen of the lowland districts of Ecuador, contrary to conventional understanding that greater risks are faced in locations of high altitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Lucas and A.-L. Ponsonby, Prog. Biophys. Mol. Biol., 2006, 92, 140–149.

    Article  CAS  PubMed  Google Scholar 

  2. IARC, IARC Monographs on the evaluation of carcinogenic Risks to Humans, IARC International Agency for Research on Cancer Technical Report, 1992, vol. 55.

  3. R. Lucas, T. McMichael, W. Smith and B. Armstrong, Solar ultraviolet radiation: Global burden of disease from solar ultraviolet radiation, World Health Organisation Technical Report Environmental Burden of Disease Series, No. 13, 2006.

    Google Scholar 

  4. Y. Cheng, J. H. Barrett, D. T. Bishop, B. K. Armstrong, V. Bataille, W. Bergman, M. Berwick, P. M. Bracci, J. M. Elwood, M. S. Ernstoff, R. P. Gallagher, A. C. Green, N. A. Gruis, E. A. Holly, C. Ingvar, P. A. Kanetsky, M. R. Karagas, T. K. Lee, L. LeMarchand, R. M. Mackie, H. Olsson, A. Osterlind, T. R. Rebbeck, P. Sasieni, V. Siskind, A. J. Swerdlow, L. Titus-Ernstoff, M. S. Zens and J. A. Newton-Bishop, Int. J. Epidemiol., 2009, 38, 814–830.

    Article  Google Scholar 

  5. S. Harrison, R. Speare, I. Wronski and R. MacLennan, Lancet, 1994, 344, 1529–1532.

    Article  CAS  PubMed  Google Scholar 

  6. J. Rivers, R. MacLennan, J. Kelly, A. Lewis, B. Tate, S. Harrison and W. McCarthy, J. Am. Acad. Dermatol., 1995, 32, 957–963.

    Article  CAS  PubMed  Google Scholar 

  7. S. Harrison, R. MacKie and R. MacLennan, J. Natl. Cancer Inst., 2000, 92, 1436–1438.

    Article  CAS  PubMed  Google Scholar 

  8. C. Wright, R. Albers, A. Mathee, Z. Kunene, C. D'Este, A. Swaminathan and R. Lucas, BMC Public Health, 2017, 17, 37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. WHO, Atlas of Health and Climate, WHO World Health Organisation Technical Report, 2012.

    Google Scholar 

  10. A. Cullen, Int. J. Toxicol., 2002, 21, 455–464.

    Article  CAS  PubMed  Google Scholar 

  11. A. Cullen, Eye Contact Lens, 2011, 37, 185–190.

    Article  PubMed  Google Scholar 

  12. M. Tucker, J. Shields, P. Hartage, J. Augsburger, R. Hoover and J. Fraumeni, N. Engl. J. Med., 1985, 313, 789–792.

    Article  CAS  PubMed  Google Scholar 

  13. L. Robman and H. Taylor, Eye, 2005, 19, 1074–1082.

    Article  CAS  PubMed  Google Scholar 

  14. R. Bourne, G. Stevens, R. White, J. Smith, S. Flaxman, H. Price, J. Jonas, J. Keeffe, J. Leasher, K. Naidoo, K. Pesudovs, S. Resnikoff and H. Taylor, Lancet Glob. Health, 2013, 1, e339–e349.

    Article  PubMed  Google Scholar 

  15. C. McCarty, M. B. Nanjan and H. Taylor, Invest. Ophthalmol. Visual Sci., 2000, 41, 3720–3725.

    CAS  Google Scholar 

  16. S. West, B. Munoz and E. Emmett, Arch. Ophthalmol., 1989, 107, 1166–1169.

    Article  CAS  PubMed  Google Scholar 

  17. J. Seddon, D. Fong, S. West and C. Valmadrid, Surv. Ophthalmol., 1995, 39, 323–334.

    Article  Google Scholar 

  18. F. Ederer, R. Hiller and H. Taylor, Am. J. Ophthalmol., 1981, 91, 381–395.

    Article  CAS  PubMed  Google Scholar 

  19. P. Dollin, Br.J. Ophthalmol., 1994, 78, 478–482.

    Article  Google Scholar 

  20. C. McCarty and H. Taylor, in Progress in Lens and cataract Research, ed. O. Hockwin, M. Kojima, N. Takahashi and D. Sliney, Karger, Basel, 2002, vol. 35, pp. 21–31, ch. A review of the epidemiologic evidence linking ultraviolet radiation and cataracts.

    Article  Google Scholar 

  21. S.-M. Saw and D. Tan, Ophthalmic Epidemiol., 1999, 6, 219–228.

    Article  CAS  PubMed  Google Scholar 

  22. T. Threlfall and D. English, Am. J. Ophthalmol., 1999, 128, 208–287.

    Article  Google Scholar 

  23. J. Rojas and H. Málaga, Ann. Ophthalmol., 1986, 18, 147–149.

    CAS  PubMed  Google Scholar 

  24. P. Lu, X. Chen, Y. Kang, L. Ke, X. Wei and W. Zhang, Clin. Exp. Ophthalmol., 2007, 35, 828–833.

    Article  PubMed  Google Scholar 

  25. M. Blumthaler, W. Ambach and R. Ellinger, J. Photochem. Photobiol., B, 1997, 39, 130–134.

    Article  CAS  Google Scholar 

  26. NASA, NASA Distributed Active Archive Center (DAAC) at NSIDC: MODIS Data Moderate Resolution Imaging Spectro-radiometer: Terra vs Aqua, 2017a, https://nsidc.org/data/modis/terra_aqua_differences.

    Google Scholar 

  27. NASA, Level-1 and Atmosphere Archive Distribution System, 2017b, https://ladsweb.modaps.eosdis.nasa.gov/.

    Google Scholar 

  28. A. Green, T. Sawada and E. Shettle, Photochem. Photobiol., 1974, 19, 251–259.

    Article  CAS  Google Scholar 

  29. A. Green, K. Cross and L. Smith, Photochem. Photobiol., 1980, 31, 59–65.

    Article  Google Scholar 

  30. P. Schippnick and A. Green, Photochem. Photobiol., 1982, 35, 89–101.

    Article  CAS  PubMed  Google Scholar 

  31. R. Rundel, in Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life, ed. R. Worrest and M. Caldwell, Springer-Verlag, Berlin, 1986, ch. Computation of Spectral Distribution and Intensity of Solar UVB Radiation.

  32. J. Sabburg, A. Parisi and J. Wong, Photochem. Photobiol., 2001, 74, 412–416.

    Article  CAS  PubMed  Google Scholar 

  33. J. Sabburg, A. Parisi, J. Wong and L. Meldrum, J. Atmos. Sol.-Terr. Phys., 2001, 63, 1623–1629.

    Article  CAS  Google Scholar 

  34. CIE, CIE J., 1987, 6, 17–22.

    Google Scholar 

  35. M. Kimlin, J. Sabburg, A. Parisi and R. Meltzer, J. Atmos. Sol.-Terr. Phys., 2003, 65, 1401–1410.

    Article  CAS  Google Scholar 

  36. N. Downs, A. Parisi, J. Turner and D. Turnbull, Photochem. Photobiol. Sci., 2008, 7, 700–710.

    Article  CAS  PubMed  Google Scholar 

  37. R. Deo, N. Downs, A. Parisi, J. Adamowski and J. Quilty, Environ. Res., 2017, 155, 141–166.

    Article  CAS  PubMed  Google Scholar 

  38. W. Josefsson, SMHI Sweedish Meteorological and Hydrological Institute Reports: Meteorol. Climatol., 1986, vol. 53, pp. 34–39.

    Google Scholar 

  39. C. Amante and B. Eakins, ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis, 2009, https://www.ngdc.noaa.gov/docucomp/page?xml=NOAA/NESDIS/NGDC/MGG/DEM/iso/xml/316.xml&view=getDataView&header=none.

    Google Scholar 

  40. NASA, GIOVANNI Ozone Total Column (DOAS), 2017c, https://giovanni.gsfc.nasa.gov/giovanni/.

    Google Scholar 

  41. M. Pfeifer, P. Koepke and J. Reuder, J. Geophys. Res., 2006, 111, D01203.

    Google Scholar 

  42. U. Feister and R. Grewe, Photochem. Photobiol., 1995, 62, 736–744.

    Article  CAS  Google Scholar 

  43. B. Diffey, C. Jansèn, F. Urbach and H. Wulf, Photodermatol., Photoimmunol. Photomed., 1997, 13, 64–66.

    Article  CAS  Google Scholar 

  44. G. Valdivieso, E. Stefos and R. Lalama, Rev. Europe. Stud., 2017, 9, 120–129.

    Article  Google Scholar 

  45. D. Moran and F. Hollows, Br. J. Ophthalmol., 1984, 68, 343–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. F. Hollows and D. Moran, Lancet, 1981, 318, 1249–1250.

    Article  Google Scholar 

  47. A. Piedehierro, M. Anton, A. Cazorla, A. Alados-Arboledas and F. Olmo, Atmos. Res., 2014, 135-136, 1–7.

    Article  Google Scholar 

  48. U. Feister, N. Cabrol and D. Häder, Atmosphere, 2015, 6, 1211–1228.

    Article  Google Scholar 

  49. L. Suàrez, J. F. Rojas, A. P. Filho and H. Karam, Photochem. Photobiol. Sci., 2017, 16, 954–971.

    Article  Google Scholar 

  50. N. Cabrol, U. Feister, D.-P. Häder, H. Piazena, E. Grin and A. Klein, Front. Environ. Sci., 2014, 2, 1–5.

    Article  Google Scholar 

  51. R. McKenzie, J. Liley and S. Madronich, Photochem. Photobiol. Sci., 2017, 16, 785–794.

    Article  CAS  PubMed  Google Scholar 

  52. R. Arjona, J. Pineiros, M. Ayabaca and F. Freire, Ann. Ist. Super. Sanita, 2016, 52, 368–373.

    Google Scholar 

  53. D. Sliney, J. Photochem. Photobiol., B, 1995, 31, 69–77.

    Article  CAS  Google Scholar 

  54. D. Mateos, J. Bilbao, A. D. Miguel and A. Pèrez-Burgos, Atmos. Res., 2010, 98, 21–27.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully accept the support of the Ministry for Public Health, Ecuador for providing the 2015 parish projections of pterygium and cataract incidence from the National Institute of Statistics and Census. We acknowledge the National Oceanic and Atmospheric Administration, NOAA (US) for access to the ETOPO1 Global relief model used to derive local surface topography, and the GIOVANNI remote sensing archive (Goddard Earth Sciences Data and Information Services Center, NASA) which listed the OMI and MODIS remote sensing products utilised in this study. We acknowledge the support of the Instituto Nacional de Investigación en Salud Pública (Ecuador), Universidad San Francisco de Quito (Ecuador), James Cook University (Australia) and the University of Southern Queensland (Australia). The authors also give special thanks to Alex Rawlings (Research Assistant) for processing the remote sensing parameters utilised in creating the surface UV exposure maps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan J. Downs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garzon-Chavez, D.R., Quentin, E., Harrison, S.L. et al. The geospatial relationship of pterygium and senile cataract with ambient solar ultraviolet in tropical Ecuador. Photochem Photobiol Sci 17, 1075–1083 (2018). https://doi.org/10.1039/c8pp00023a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00023a

Navigation