Skip to main content
Log in

Controlled assembly of metal colloids on dye-doped silica particles to tune the photophysical properties of organic molecules

  • PERSPECTIVE
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The use of plasmonic nanomaterials is a challenging strategy to control radiation and radiation-induced processes at a nanometric scale. The localized surface plasmons of metal nanoparticles have been shown to affect the efficiency of a variety of radiative and non-radiative processes occurring in organic molecules. In this contribution, we present an overview of the results obtained through an original approach based on the hierarchical assembly of plasmonic gold colloids on silica templates, covalently doped with organic dyes. The detailed morphological characterization demonstrates the disposition of gold colloids on silica achieved through the tight control of the synthetic conditions. The studies carried out while gradually increasing the concentration of gold nanoparticles allow the detailed investigation of the effects of the progressive addition of plasmonic particles on the photophysical behaviour of organic molecules. In particular, the fluorescence behaviour of three dyes with different spectral properties, namely fluorescein, rhodamine B and 9-aminoacridine, are investigated in the presence of increasing concentrations of gold nanoparticles. In order to fix the distance between the dye and the gold nanoparticles, the dyes are anchored to silica nanoparticles, and the metal colloids are chemically adsorbed on the silica surface. The steady state and time-resolved data are analysed to evaluate the impact of plasmonic nanoparticles on the radiative and non-radiative processes of the dyes; the data provide evidence that the modulation of the fluorescence intensity (enhancement or quenching) can be achieved by changing the concentration of gold colloids. The plasmonic nanostructures can be employed to favour one deactivation process over the others. For example, we demonstrate that the photoinduced formation of reactive oxygen species (ROS) can be enhanced upon the plasmonic engineering of a photosensitizing agent (Protoporphyrin IX, PpIX). The Vis-excitation of silica-PpIX samples in the presence of gold nanoparticles results in a faster and more efficient photoinduced formation of ROS species either in solution or in a hydrogel. The ROS efficiency data and the fluorescence behaviour of PpIX in the presence of gold colloids suggest that the enhancement of the excitation field occurs through a plasmonic effect. For the application of the assembled hybrid materials, further advantages come from the development of photosensi-tizer-containing hydrogel films that are able to efficiently produce ROS upon visible excitation. Our preliminary results are herein reported and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel and C. A. Mirkin, Angew. Chem., Int. Ed., 2010, 49, 3280–3294.

    Article  CAS  Google Scholar 

  2. J. Jana, M. Ganguly and T. Pal, RSC Adv., 2016, 6, 86174–86211.

    Article  CAS  Google Scholar 

  3. E. Priyadarshini and N. Pradhan, Sens. Actuators, B, 2017, 238, 888–902.

    Article  CAS  Google Scholar 

  4. J. Zhao, S. C. Nguyen, R. Ye, B. Ye, H. Weller, G. A. Somorjai, A. P. Alivisatos and F. Dean Toste, ACS Cent. Sci., 2017, 3, 482–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. M. L. Brongersma, N. J. Halas and P. Nordlander, Nat. Nanotechnol., 2015, 10, 25–34.

    Article  CAS  PubMed  Google Scholar 

  6. I. Venditti, Materials, 2017, 10, 97–115.

    Article  PubMed Central  CAS  Google Scholar 

  7. G. Cao, in Nanostructures and Nanomaterials-Synthesis, Properties and Applications, Imperial College Press, 2004, vol. 2, pp. 51–109.

    Article  Google Scholar 

  8. P. Pedrosa, R. Vinhas, A. Fernandes and P. Baptista, Nanomaterials, 2015, 5, 1853–1879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. E. Boisselier and D. Astruc, Chem. Soc. Rev., 2009, 38, 1759–1782.

    Article  CAS  PubMed  Google Scholar 

  10. M. C. M. Daniel and D. Astruc, Chem. Rev., 2004, 104, 293–346.

    Article  CAS  PubMed  Google Scholar 

  11. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao and R. P. Van Duyne, Nat. Mater., 2008, 7, 442–453.

    Article  CAS  PubMed  Google Scholar 

  12. J. M. Pingarrón, P. Yáñez-Sedeño and A. González-Cortés, Electrochim. Acta, 2008, 53, 5848–5866.

    Article  CAS  Google Scholar 

  13. P. K. Jain, X. Huang, I. H. El-Sayed and M. A. El-Sayed, Plasmonics, 2007, 2, 107–118.

    Article  CAS  Google Scholar 

  14. L. Latterini and L. Tarpani, in Bio-and Bioinspired Nanomaterials, ed. D. Ruiz-Molina, F. Novio and C. Roscini, Wiley-VCH Verlag GmbH & Co. KGaA, 2014, pp. 173–200.

  15. K. Watanabe, D. Menzel, N. Nilius and H. J. Freund, Chem. Rev., 2006, 106, 4301–4320.

    Article  CAS  PubMed  Google Scholar 

  16. N. Zhou, V. López-Puente, Q. Wang, L. Polavarapu, I. Pastoriza-Santos and Q.-H. Xu, RSCAdv., 2015, 5, 29076–29097.

    CAS  Google Scholar 

  17. B. Fortuni, Y. Fujita, M. Ricci, T. Inose, R. Aubert, G. Lu, J. A. Hutchison, J. Hofkens, L. Latterini and H. Uji-i, Chem. Commun., 2017, 53, 5121–5124.

    Article  CAS  Google Scholar 

  18. L. Tarpani and L. Latterini, J. Lumin., 2017, 185, 192–199.

    Article  CAS  Google Scholar 

  19. S. C. Hayden, L. A. Austin, R. D. Near, R. Ozturk and M. A. El-Sayed, J. Photochem. Photobiol., A, 2013, 269, 34–41.

    Article  CAS  Google Scholar 

  20. Y. Zhang, K. Aslan, M. J. R. Previte and C. D. Geddes, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 1798–1802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O. Planas, N. Macia, M. Agut, S. Nonell and B. Heyne, J. Am. Chem. Soc., 2016, 138, 2762–2768.

    Article  CAS  PubMed  Google Scholar 

  22. D. Radziuk and H. Moehwald, Phys. Chem. Chem. Phys., 2015, 17, 21072–21093.

    Article  CAS  PubMed  Google Scholar 

  23. E. Ringe, B. Sharma, A.-I. Henry, L. D. Marks and R. P. Van Duyne, Phys. Chem. Chem. Phys., 2013, 15, 4110.

    Article  CAS  PubMed  Google Scholar 

  24. E. Mencarelli, L. Fano, L. Tarpani and L. Latterini, Mater. Today Proc., 2015, 2, 161–170.

    Article  Google Scholar 

  25. G. Lu, H. Yuan, L. Su, B. Kenens, Y. Fujita, M. Chamtouri, M. Pszona, E. Fron, J. Waluk, J. Hofkens and H. Uji-i, J. Phys. Chem. Lett., 2017, 8, 2774–2779.

    Article  CAS  PubMed  Google Scholar 

  26. G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison and H. Uji-I, Adv. Mater., 2014, 26, 5124–5128.

    Article  CAS  PubMed  Google Scholar 

  27. L. Su, H. Yuan, G. Lu, S. Rocha, M. Orrit, J. Hofkens and H. Uji-I, ACS Nano, 2016, 10, 2455–2466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. L. Su, G. Lu, B. Kenens, S. Rocha, E. Fron, H. Yuan, C. Chen, P. Van Dorpe, M. B. J. Roeffaers, H. Mizuno, J. Hofkens, J. A. Hutchison and H. Uji-I, Nat. Commun., 2015, 6, 6287–6295.

    Article  CAS  PubMed  Google Scholar 

  29. B. G. Trewyn, S. Giri, I. I. Slowing and V. S.-Y. Lin, Chem. Commun., 2007, 114, 3236–3245.

    Article  CAS  Google Scholar 

  30. I. I. Slowing, J. L. Vivero-Escoto, B. G. Trewyn and V. S.-Y. Lin, J. Mater. Chem., 2010, 20, 7924–7937.

    Article  CAS  Google Scholar 

  31. L. Wang, K. Wang, S. Santra, X. Zhao, L. R. Hilliard, J. E. Smith, Y. Wu and W. Tan, Anal. Chem., 2006, 78, 646–654.

    Article  Google Scholar 

  32. L. M. Rossi, P. R. Silva, L. L. R. Vono, A. U. Fernandes, D. B. Tada and M. S. Baptista, Langmuir, 2008, 24, 12534–12538.

    Article  CAS  PubMed  Google Scholar 

  33. S. L. Westcott, S. J. Oldenburg, T. R. Lee and N. J. Halas, Langmuir, 1998, 14, 5396–5401.

    Article  CAS  Google Scholar 

  34. W. Stober, A. Fink and E. Bohn, J. Colloid Interface Sci., 1968, 26, 62–69.

    Article  Google Scholar 

  35. B. Storti, F. Elisei, S. Abbruzzetti, C. Viappiani and L. Latterini, J. Phys. Chem. C, 2009, 113, 7516–7521.

    Article  CAS  Google Scholar 

  36. L. Latterini and L. Tarpani, J. Phys. Chem. C, 2011, 115, 21098–21104.

    Article  CAS  Google Scholar 

  37. H.-S. Jung, D.-S. Moon and J.-K. Lee, J. Nanomater., 2012, 2012, 593471.

    Google Scholar 

  38. I. J. Bruce and T. Sen, Langmuir, 2005, 21, 7029–7035.

    Article  CAS  PubMed  Google Scholar 

  39. J. E. Barney, S. R. Harvey and T. S. Hermann, J. Chromatogr. A, 1969, 45, 82–93.

    Article  CAS  Google Scholar 

  40. X. Huang, P. K. Jain, I. H. El-Sayed and M. A. El-Sayed, Nanomedicine, 2007, 2, 681–693.

    Article  CAS  PubMed  Google Scholar 

  41. L. Tarpani and L. Latterini, Photochem. Photobiol. Sci., 2014, 13, 884–890.

    Article  CAS  PubMed  Google Scholar 

  42. D. E. J. G. J. Dolmans, D. Fukumura and R. K. Jain, Nat. Rev. Cancer, 2003, 3, 380–387.

    Article  CAS  PubMed  Google Scholar 

  43. M. R. Hamblin, Curr. Opin. Microbiol., 2016, 33, 67–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. G. Zampini, O. Planas, F. Marmottini, O. Gulias, M. Agut, S. Nonell and L. Latterini, RSCAdv., 2017, 7, 14422–14429.

    CAS  Google Scholar 

  45. G. Zampini, L. Tarpani, G. Massaro, M. Gambucci, A. Nicoziani and L. Latterini, ChemPhotoChem, 2017, 1, 553–561.

    Article  CAS  Google Scholar 

  46. E. Calo and V. V. Khutoryanskiy, Eur. Polym. J., 2015, 65, 252–267.

    Article  CAS  Google Scholar 

  47. E. Septimus, R. A. Weinstein, T. M. Perl, D. A. Goldmann and D. S. Yokoe, Infect. Control Hosp. Epidemiol., 2014, 35, 797–801.

    Article  PubMed  Google Scholar 

  48. J. J. Mock, D. R. Smith and S. Schultz, Nano Lett., 2003, 3, 485–491.

    Article  CAS  Google Scholar 

  49. S. Underwood and P. Mulvaney, Langmuir, 1994, 10, 3427–3430.

    Article  CAS  Google Scholar 

  50. K. S. Lee and M. A. El-Sayed, J. Phys. Chem. B, 2005, 109, 20331–20338.

    Article  CAS  PubMed  Google Scholar 

  51. F. Han, A. H. Soeriyadi, S. R. C. Vivekchand and J. J. Gooding, ACS Macro Lett., 2016, 5, 626–630.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Università di Perugia and the Ministero per l'Università e la Ricerca Scientifica e Tecnologica (Rome). The authors acknowledge the financial support from the Fondazione Cassa di Risparmio di Perugia (grant no. 2014.0260.021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loredana Latterini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zampini, G., Tarpani, L., Massaro, G. et al. Controlled assembly of metal colloids on dye-doped silica particles to tune the photophysical properties of organic molecules. Photochem Photobiol Sci 17, 995–1002 (2018). https://doi.org/10.1039/c8pp00022k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00022k

Navigation