Skip to main content
Log in

Blue light filtered white light induces depression-like responses and temporary spatial learning deficits in rats

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Objectives: Ambient light has a vital impact on mood and cognitive functions. Blue light has been previously reported to play a salient role in the antidepressant effect via melanopsin. Whether blue light filtered white light (BFW) affects mood and cognitive functions remains unclear. The present study aimed to investigate whether BFW led to depression-like symptoms and cognitive deficits including spatial learning and memory abilities in rats, and whether they were associated with the light-responsive function in retinal explants. Methods: Male Sprague-Dawley albino rats were randomly divided into 2 groups (n = 10) and treated with a white light-emitting diode (LED) light source and BFW light source, respectively, under a standard 12: 12 h L/D condition over 30 days. The sucrose consumption test, forced swim test (FST) and the level of plasma corticosterone (CORT) were employed to evaluate depression-like symptoms in rats. Cognitive functions were assessed by the Morris water maze (MWM) test. A multi-electrode array (MEA) system was utilized to measure electro-retinogram (ERG) responses induced by white or BFW flashes. Results: The effect of BFW over 30 days on depression-like responses in rats was indicated by decreased sucrose consumption in the sucrose consumption test, an increased immobility time in the FST and an elevated level of plasma CORT. BFW led to temporary spatial learning deficits in rats, which was evidenced by prolonged escape latency and swimming distances in the spatial navigation test. However, no changes were observed in the short memory ability of rats treated with BFW. The micro-ERG results showed a delayed implicit time and reduced amplitudes evoked by BFW flashes compared to the white flash group. Conclusions: BFW induces depression-like symptoms and temporary spatial learning deficits in rats, which might be closely related to the impairment of light-evoked output signals in the retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. LeGates, D. C. Fernandez and S. Hattar, Light as a Central Modulator of Circadian Rhythms, Sleep and Affect, Nat. Rev. Neurosci., 2014, 15, 443–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. T. A. LeGates, C. M. Altimus, H. Wang, H. K. Lee, S. Yang, H. Zhao, A. Kirkwood, E. T. Weber and S. Hattar, Aberrant Light Directly Impairs Mood and Learning through Melanopsin-Expressing Neurons, Nature, 2012, 491, 594–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. G. Leach, W. Adidharma and L. Yan, Depression-Like Responses Induced by Daytime Light Deficiency in the Diurnal Grass Rat (Arvicanthis Niloticus), PLoS One, 2013, 8, e57115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. F. M. Jacobsen, T. A. Wehr, D. A. Sack, S. P. James and N. E. Rosenthal, Seasonal Affective Disorder: A Review of the Syndrome and its Public Health Implications, Am. J. Public Health, 1987, 77, 57–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. N. E. Rosenthal, D. A. Sack, J. C. Gillin, A. J. Lewy, F. K. Goodwin, Y. Davenport, P. S. Mueller, D. A. Newsome and T. A. Wehr, Seasonal Affective Disorder. A Description of the Syndrome and Preliminary Findings with Light Therapy, Arch. Gen. Psychiatry, 1984, 41, 72–80.

    Article  CAS  PubMed  Google Scholar 

  6. L. N. Rosen, S. D. Targum, M. Terman, M. J. Bryant, H. Hoffman, S. F. Kasper, J. R. Hamovit, J. P. Docherty, B. Welch and N. E. Rosenthal, Prevalence of Seasonal Affective Disorder at Four Latitudes, Psychiatry Res., 1990, 31, 131.

    Article  CAS  PubMed  Google Scholar 

  7. J. H. Baek, J. S. Kim, I. Huh, K. Lee, J. H. Park, T. Park, K. Ha and K. S. Hong, Prevalence, Behavioral Manifestations and Associated Individual and Climatic Factors of Seasonality in the Korean General Population, Compr. Psychiatry, 2015, 57, 148–154.

    Article  PubMed  Google Scholar 

  8. S. G. Potkin, M. Zetin, V. Stamenkovic, D. Kripke and W. J. Bunney, Seasonal Affective Disorder: Prevalence Varies with Latitude and Climate, Clin. Neuropharmacol., 1986, 9(Suppl 4), 181–183.

    PubMed  Google Scholar 

  9. M. Okawa, S. Shirakawa, M. Uchiyama, M. Oguri, M. Kohsaka, K. Mishima, K. Sakamoto, H. Inoue, K. Kamei and K. Takahashi, Seasonal Variation of Mood and Behaviour in a Healthy Middle-Aged Population in Japan, Acta Psychiatr. Scand., 1996, 94, 211–216.

    Article  CAS  PubMed  Google Scholar 

  10. C. I. Eastman, M. A. Young, L. F. Fogg, L. Liu and P. M. Meaden, Bright Light Treatment of Winter Depression: A Placebo-Controlled Trial, Arch. Gen. Psychiatry, 1998, 55, 883–889.

    Article  CAS  PubMed  Google Scholar 

  11. S. Ruhrmann, S. Kasper, B. Hawellek, B. Martinez, G. Hoflich, T. Nickelsen and H. J. Moller, Effects of Fluoxetine Versus Bright Light in the Treatment of Seasonal Affective Disorder, Psychol. Med., 1998, 28, 923–933.

    Article  CAS  PubMed  Google Scholar 

  12. C. Even, C. M. Schroder, S. Friedman and F. Rouillon, Efficacy of Light Therapy in Nonseasonal Depression: A Systematic Review, J. Affective Disord., 2008, 108, 11–23.

    Article  Google Scholar 

  13. M. Terman and J. S. Terman, Light Therapy for Seasonal and Nonseasonal Depression: Efficacy, Protocol, Safety, and Side Effects, CNS Spectrum, 2005, 10, 647–663.

    Article  Google Scholar 

  14. I. Provencio, I. R. Rodriguez, G. Jiang, W. P. Hayes, E. F. Moreira and M. D. Rollag, A Novel Human Opsin in the Inner Retina, J. Neurosci., 2000, 20, 600–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A. D. Guler, J. L. Ecker, G. S. Lall, S. Haq, C. M. Altimus, H. W. Liao, A. R. Barnard, H. Cahill, T. C. Badea, H. Zhao, M. W. Hankins, D. M. Berson, R. J. Lucas, K. W. Yau and S. Hattar, Melanopsin Cells are the Principal Conduits for Rod-Cone Input to Non-Image-Forming Vision, Nature, 2008, 453, 102–105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. C. M. Altimus, A. D. Guler, K. L. Villa, D. S. McNeill, T. A. Legates and S. Hattar, Rods-Cones and Melanopsin Detect Light and Dark to Modulate Sleep Independent of Image Formation, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 19998–20003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M. A. Mainster, Violet and Blue Light Blocking Intraocular Lenses: Photoprotection Versus Photoreception, Br. J. Ophthalmol., 2006, 90, 784–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J. J. Gooley, J. Lu, T. C. Chou, T. E. Scammell and C. B. Saper, Melanopsin in Cells of Origin of the Retinohypothalamic Tract, Nat. Neurosci., 2001, 4, 1165.

    Article  CAS  PubMed  Google Scholar 

  19. T. M. Schmidt, M. T. H. Do, D. Dacey, R. Lucas, S. Hattar and A. Matynia, Melanopsin-Positive Intrinsically Photosensitive Retinal Ganglion Cells: From Form to Function, J. Neurosci., 2011, 31, 16094–16101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. Munch, S. Kobialka, R. Steiner, P. Oelhafen, A. Wirz-Justice and C. Cajochen, Wavelength-Dependent Effects of Evening Light Exposure On Sleep Architecture and Sleep EEG Power Density in Men, Am. J. Physiol., 2006, 290, R1421–R1428.

    CAS  Google Scholar 

  21. J. Hannibal, L. Kankipati, C. E. Strang, B. B. Peterson, D. Dacey and P. D. Gamlin, Central Projections of Intrinsically Photosensitive Retinal Ganglion Cells in the Macaque Monkey, J. Comp. Neurol., 2014, 522, 2231–2248.

    Article  CAS  PubMed  Google Scholar 

  22. S. Hattar, M. Kumar, A. Park, P. Tong, J. Tung, K. W. Yau and D. M. Berson, Central Projections of Melanopsin-Expressing Retinal Ganglion Cells in the Mouse, J. Comp. Neurol., 2006, 497, 326–349.

    Article  PubMed  PubMed Central  Google Scholar 

  23. C. Ren, L. Luan, L. B. Wui-Man, X. Huang, J. Yang, Y. Zhou, X. Wu, J. Gao, G. E. Pickard, K. F. So and M. Pu, Direct Retino-Raphe Projection Alters Serotonergic Tone and Affective Behavior, Neuropsychopharmacol, 2013, 38, 1163–1175.

    Article  Google Scholar 

  24. S. Hattar, H. W. Liao, M. Takao, D. M. Berson and K. W. Yau, Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity, Science, 2002, 295, 1065–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. X. Li, C. Ren, L. Huang, B. Lin, M. Pu, G. E. Pickard and K. F. So, The Dorsal Raphe Nucleus Receives Afferents from Alpha-Like Retinal Ganglion Cells and Intrinsically Photosensitive Retinal Ganglion Cells in the Rat, Invest. Ophthalmol. Visual Sci., 2015, 56, 8373–8381.

    Article  CAS  Google Scholar 

  26. G. Glickman, B. Byrne, C. Pineda, W. W. Hauck and G. C. Brainard, Light Therapy for Seasonal Affective Disorder with Blue Narrow-Band Light-Emitting Diodes (LEDs), Biol. Psychiatry, 2006, 59, 502–507.

    Article  PubMed  Google Scholar 

  27. R. E. Strong, B. K. Marchant, F. W. Reimherr, E. Williams, P. Soni and R. Mestas, Narrow-Band Blue-Light Treatment of Seasonal Affective Disorder in Adults and the Influence of Additional Nonseasonal Symptoms, Depression Anxiety, 2009, 26, 273–278.

    Article  PubMed  Google Scholar 

  28. Y. Meesters, V. Dekker, L. J. Schlangen, E. H. Bos and M. J. Ruiter, Low-Intensity Blue-Enriched White Light (750 Lux) and Standard Bright Light (10,000 Lux) are Equally Effective in Treating SAD. A Randomized Controlled Study, BMC Psychiatry, 2011, 11, 17.

    Article  PubMed  PubMed Central  Google Scholar 

  29. J. L. Anderson, C. A. Glod, J. Dai, Y. Cao and S. W. Lockley, Lux Vs. Wavelength in Light Treatment of Seasonal Affective Disorder, Acta Psychiatr. Scand., 2009, 120, 203–212.

    Article  CAS  PubMed  Google Scholar 

  30. S. Lehrl, K. Gerstmeyer, J. H. Jacob, H. Frieling, A. W. Henkel, R. Meyrer, J. Wiltfang, J. Kornhuber and S. Bleich, Blue Light Improves Cognitive Performance, J. Neural Transm., 2007, 114, 457–460.

    Article  CAS  PubMed  Google Scholar 

  31. G. Vandewalle, S. Gais, M. Schabus, E. Balteau, J. Carrier, A. Darsaud, V. Sterpenich, G. Albouy, D. J. Dijk and P. Maquet, Wavelength-Dependent Modulation of Brain Responses to a Working Memory Task by Daytime Light Exposure, Cereb. Cortex, 2007, 17, 2788–2795.

    Article  CAS  PubMed  Google Scholar 

  32. T. P. Williams and W. L. Howell, Action Spectrum of Retinal Light-Damage in Albino Rats, Invest. Ophthalmol. Visual Sci., 1983, 24, 285–287.

    CAS  Google Scholar 

  33. P. V. Algvere, J. Marshall and S. Seregard, Age-Related Maculopathy and the Impact of Blue Light Hazard, Acta Ophthalmol. Scand., 2006, 84, 4–15.

    Article  CAS  PubMed  Google Scholar 

  34. G. C. Demontis, B. Longoni and P. L. Marchiafava, Molecular Steps Involved in Light-Induced Oxidative Damage to Retinal Rods, Invest. Ophthalmol. Visual Sci., 2002, 43, 2421–2427.

    Google Scholar 

  35. W. K. Noell, V. S. Walker, B. S. Kang and S. Berman, Retinal Damage by Light in Rats, Invest. Ophthalmol., 1966, 5, 450.

    CAS  PubMed  Google Scholar 

  36. W. N. Charman, Age, Lens Transmittance, and the Possible Effects of Light On Melatonin Suppression, Ophthalmic Physiol Opt, 2003, 23, 181–187.

    Article  CAS  PubMed  Google Scholar 

  37. M. E. Mendoza-Mendieta and A. A. Lorenzo-Mejia, Associated Depression in Pseudophakic Patients with Intraocular Lens with and without Chromophore, Clin. Ophthalmol., 2016, 10, 577–581.

    Article  PubMed  PubMed Central  Google Scholar 

  38. P. L. Turner and M. A. Mainster, Circadian Photoreception: Ageing and the Eye's Important Role in Systemic Health, Br. J. Ophthalmol., 2008, 92, 1439–1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. R. B. Harris, J. Zhou, B. D. Youngblood, G. N. Smagin and D. H. Ryan, Failure to Change Exploration Or Saccharin Preference in Rats Exposed to Chronic Mild Stress, Physiol. Behav., 1997, 63, 91–100.

    Article  CAS  PubMed  Google Scholar 

  40. N. F. Forbes, C. A. Stewart, K. Matthews and I. C. Reid, Chronic Mild Stress and Sucrose Consumption: Validity as a Model of Depression, Physiol. Behav., 1996, 60, 1481–1484.

    Article  CAS  PubMed  Google Scholar 

  41. P. S. D'Aquila, J. Newton and P. Willner, Diurnal Variation in the Effect of Chronic Mild Stress On Sucrose Intake and Preference, Physiol. Behav., 1997, 62, 421–426.

    Article  PubMed  Google Scholar 

  42. Q. Q. Mao, S. P. Ip, K. M. Ko, S. H. Tsai and C. T. Che, Peony Glycosides Produce Antidepressant-Like Action in Mice Exposed to Chronic Unpredictable Mild Stress: Effects On Hypothalamic-Pituitary-Adrenal Function and Brain-Derived Neurotrophic Factor, Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 2009, 33, 1211–1216.

    Article  CAS  Google Scholar 

  43. A. Bergström, M. N. Jayatissa, A. Mork and O. Wiborg, Stress Sensitivity and Resilience in the Chronic Mild Stress Rat Model of Depression; An in Situ Hybridization Study, Brain Res., 2008, 1196, 41–52.

    Article  PubMed  CAS  Google Scholar 

  44. C. V. Vorhees and M. T. Williams, Morris Water Maze: Procedures for Assessing Spatial and Related Forms of Learning and Memory, Nat. Protoc., 2006, 1, 848–858.

    Article  PubMed  PubMed Central  Google Scholar 

  45. S. G. Rosolen, B. Kolomiets, O. Varela and S. Picaud, Retinal Electrophysiology for Toxicology Studies: Applications and Limits of ERG in Animals and Ex Vivo Recordings, Exp. Toxicol. Pathol., 2008, 60, 17–32.

    Article  PubMed  Google Scholar 

  46. K. Reinhard, A. Tikidji-Hamburyan, H. Seitter, S. Idrees, M. Mutter, B. Benkner and T. A. Münch, Step-By-Step Instructions for Retina Recordings with Perforated Multi Electrode Arrays, PLoS One, 2014, 9, e106148.

    Article  PubMed  PubMed Central  Google Scholar 

  47. C. N. Liu, M. Devor, S. G. Waxman and J. D. Kocsis, Subthreshold Oscillations Induced by Spinal Nerve Injury in Dissociated Muscle and Cutaneous Afferents of Mouse DRG, J. Neurophysiol., 2002, 87, 2009–2017.

    Article  PubMed  PubMed Central  Google Scholar 

  48. T. J. Bruno and P. D. N. Svoronos, CRC Handbook of Fundamental Spectroscopic Correlation Charts, CRC Press, Taylor & Francis group, 2006.

    Google Scholar 

  49. AQSIQ and SAC, in GB 14925-2010, Standards Press of China, 2010.

    Google Scholar 

  50. R. J. Katz and S. Hersh, Amitriptyline and Scopolamine in an Animal Model of Depression, Neurosci. Biobehav. Rev., 1981, 5, 265–271.

    Article  CAS  PubMed  Google Scholar 

  51. S. Grant, N. N. Patel, A. R. Philp, C. N. Grey, R. D. Lucas, R. G. Foster, J. K. Bowmaker and G. Jeffery, Rod Photopigment Deficits in Albinos are Specific to Mammals and Arise During Retinal Development, Vis. Neurosci., 2001, 18, 245–251.

    Article  CAS  PubMed  Google Scholar 

  52. M. Hebert, M. Dumont and J. Paquet, Seasonal and Diurnal Patterns of Human Illumination Under Natural Conditions, Chronobiol. Int., 1998, 15, 59–70.

    Article  CAS  PubMed  Google Scholar 

  53. O. Iyilikci, E. Aydin and R. Canbeyli, Blue but Not Red Light Stimulation in the Dark Has Antidepressant Effect in Behavioral Despair, Behav. Brain Res., 2009, 203, 65–68.

    Article  PubMed  Google Scholar 

  54. Z. Liu, Y. Qi, Z. Cheng, X. Zhu, C. Fan and S. Y. Yu, The Effects of Ginsenoside Rg1 On Chronic Stress Induced Depression-Like Behaviors, BDNF Expression and the Phosphorylation of PKA and CREB in Rats, Neuroscience, 2016, 322, 358–369.

    Article  CAS  PubMed  Google Scholar 

  55. N. Benaroya-Milshtein, N. Hollander, A. Apter, T. Kukulansky, N. Raz, A. Wilf, I. Yaniv and C. G. Pick, Environmental Enrichment in Mice Decreases Anxiety, Attenuates Stress Responses and Enhances Natural Killer Cell Activity, Eur. J. Neurosci., 2004, 20, 1341–1347.

    Article  CAS  PubMed  Google Scholar 

  56. A. Tapia-Osorio, R. Salgado-Delgado, M. Angeles-Castellanos and C. Escobar, Disruption of Circadian Rhythms Due to Chronic Constant Light Leads to Depressive and Anxiety-Like Behaviors in the Rat, Behav. Brain Res., 2013, 252, 1–9.

    Article  PubMed  Google Scholar 

  57. A. R. Sutin and A. B. Zonderman, Depressive Symptoms are Associated with Weight Gain Among Women, Psychol. Med., 2012, 42, 2351–2360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. L. Coutellier, A. C. Friedrich, K. Failing, V. Marashi and H. Wurbel, Effects of Rat Odour and Shelter On Maternal Behaviour in C57BL/6 Dams and On Fear and Stress Responses in their Adult Offspring, Physiol. Behav., 2008, 94, 393–404.

    Article  CAS  PubMed  Google Scholar 

  59. J. F. Cryan and A. Holmes, The Ascent of Mouse: Advances in Modelling Human Depression and Anxiety, Nat. Rev. Drug Discovery, 2005, 4, 775–790.

    Article  CAS  PubMed  Google Scholar 

  60. B. Sullivan and T. W. Payne, Affective Disorders and Cognitive Failures: A Comparison of Seasonal and Nonseasonal Depression, Am. J. Psychiatry, 2007, 164, 1663–1667.

    Article  PubMed  Google Scholar 

  61. J. T. O'Brien, B. J. Sahakian and S. A. Checkley, Cognitive Impairments in Patients with Seasonal Affective Disorder, Br. J. Psychiatry, 1993, 163, 338–343.

    Article  Google Scholar 

  62. A. Polosa, H. Bessaklia and P. Lachapelle, Strain Differences in Light-Induced Retinopathy, PLoS One, 2016, 11, e158082.

    Google Scholar 

  63. L. Mecklenburg and U. Schraermeyer, An Overview On the Toxic Morphological Changes in the Retinal Pigment Epithelium After Systemic Compound Administration, Toxicol. Pathol., 2007, 35, 252–267.

    Article  CAS  PubMed  Google Scholar 

  64. K. Shibuya, M. Tomohiro, S. Sasaki and S. Otake, Characteristics of Structures and Lesions of the Eye in Laboratory Animals Used in Toxicity Studies, J. Toxicol. Pathol., 2015, 28, 181–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. L. Smale, A. Nunez and M. Schwartz, Rhythms in a Diurnal Brain, Biol. Rhythm Res., 2008, 39, 305–318.

    Article  Google Scholar 

  66. E. Challet, Minireview: Entrainment of the Suprachiasmatic Clockwork in Diurnal and Nocturnal Mammals, Endocrinology, 2007, 148, 5648–5655.

    Article  CAS  PubMed  Google Scholar 

  67. U. Redlin, Neural Basis and Biological Function of Masking by Light in Mammals: Suppression of Melatonin and Locomotor Activity, Chronobiol. Int., 2001, 18, 737–758.

    Article  CAS  PubMed  Google Scholar 

  68. G. T. Prusky, P. W. West and R. M. Douglas, Reduced Visual Acuity Impairs Place but Not Cued Learning in the Morris Water Task, Behav. Brain Res., 2000, 116, 135–140.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Beijing Natural Science Foundation (No. 7182083) and Peking University ‘the 985 Project’. The authors would like to thank Changning Liu, Matthew R. Zahner and Jenny Zhang of Pfizer Inc. for their technical assistance and instrumentation support in MEA recordings.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinghe Meng, Yuzheng Lian, Jianjun Jiang, Wei Wang, Xiaohong Hou, Yao Pan, Hongqian Chu, Lanqin Shang, Xuetao Wei or Weidong Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Q., Lian, Y., Jiang, J. et al. Blue light filtered white light induces depression-like responses and temporary spatial learning deficits in rats. Photochem Photobiol Sci 17, 386–394 (2018). https://doi.org/10.1039/c7pp00271h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00271h

Navigation