Skip to main content
Log in

Photophysics of N,N-dimethyl-3-(1-indolyl)propan-1-ammonium chloride and related derivatives

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photophysical properties of two new indole derivatives have been examined by steady-state and dynamic spectroscopic methods. The ground-state structures and conformations of 3-(1-indolyl)-N,N-dimethylpropan-1-ammonium chloride (InCl) and 3-(1-indolyl)-N,N,N-trimethylpropan-1-ammonium chloride (MeInCl) have been examined through density functional theory calculations. These calculations reveal a preference for a ‘closed’ conformation which places the cationic ammonium group in proximity to the π-electron cloud in low polarity environments. This interaction is best described as an intramolecular hydrogen–π bond in the case of InCl and a cation–π interaction for MeInCl. The ground-state conformational equilibria are influenced by changes in the dielectric constant of the solvent, resulting in a variety of photophysical behaviors. The excitation/emission spectra, fluorescence quantum yields, and excited-state lifetimes, are reported for InCl, MeInCl, and a reference compound, 1-methylindole, in 1,4-dioxane (ε = 2), acetonitrile (ε = 37), and water (ε = 78) where solubility allows. Data from these solvents provide evidence for independent fluorescence quenching pathways for InCl and MeInCl. In addition, they lead to insights into the complexities of indole photophysics by demonstrating the sensitivity of the locally-excited states to changes in charge-density and solvent environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Kevan and H. Steen, Chem. Phys. Lett., 1975, 34, 184–188, DOI: 10.1016/0009-2614(75)80232-6.

    Article  CAS  Google Scholar 

  2. W. B. De Lauder and P. Wahl, Biochim. Biophys. Acta, 1971, 243, 153–163, DOI: 10.1016/0005-2795(71)90071-7.

    Article  Google Scholar 

  3. D. Brisker-Klaiman and A. Dreuw, ChemPhysChem, 2015, 16, 1695–1702, DOI: 10.1002/cphc.201500073.

    Article  CAS  Google Scholar 

  4. T. J. Godfrey, H. Yu, M. S. Biddle and S. Ullrich, Phys. Chem. Chem. Phys., 2015, 17, 25197–25209, DOI: 10.1039/ c5cp02975a.

    Article  CAS  Google Scholar 

  5. S. Arnold, L. Tong and M. Sulkes, J. Phys. Chem., 1994, 98, 2325–2327, DOI: 10.1021/j100060a020.

    Article  CAS  Google Scholar 

  6. J. R. Albani, J. Fluoresc., 2014, 24, 105–117, DOI: 10.1007/ s10895-013-1274-y.

    Article  CAS  Google Scholar 

  7. H. T. Yu, W. J. Colucci, M. L. Mclaughlin and M. D. Barkley, J. Am. Chem. Soc., 1992, 114, 8449–8454, DOI: 10.1021/ja00048a015.

    Article  CAS  Google Scholar 

  8. H. Shizuka, M. Serizawa, H. Kobayashi, K. Kameta, H. Sugiyama, T. Matsuura and I. Saito, J. Am. Chem. Soc., 1988, 110, 1726–1732, DOI: 10.1021/ja00214a011.

    Article  CAS  Google Scholar 

  9. D. Bent and E. Hayon, J. Am. Chem. Soc., 1975, 97, 2612–2619, DOI: 10.1021/ja00843a004.

    Article  CAS  Google Scholar 

  10. J. Leonard, D. Sharma, B. Szafarowicz, K. Torgasin and S. Haacke, Phys. Chem. Chem. Phys., 2010, 12, 15744–15750, DOI: 10.1039/c0cp00615g.

    Article  CAS  Google Scholar 

  11. S. Abraham and R. G. Weiss, J. Am. Chem. Soc., 2011, 133, 19250–19256.

    Article  CAS  Google Scholar 

  12. T. M. Safko, M. M. Faleiros, T. D. Z. Atvars and R. G. Weiss, J. Phys. Chem. A, 2016, 120, 3983–3991, DOI: 10.1021/acs. jpca.6b01519.

    Article  CAS  Google Scholar 

  13. A. D. Lesiak and R. A. Musah, Forensic Sci. Int., 2016, 266, 271–280, DOI: 10.1016/j.forsciint.2016.06.009.

    Article  CAS  Google Scholar 

  14. R. H. Howland, J. Psychosoc. Nurs. Ment. Health Serv., 2016, 54, 21–24, DOI: 10.3928/02793695-20160616-09.

    PubMed  Google Scholar 

  15. M. C. Mithoefer, C. S. Grob and T. D. Brewerton, Lancet Psychiatry, 2016, 3, 481–488, DOI: 10.1016/S2215-0366(15) 00576-3.

    Article  Google Scholar 

  16. L. F. Tofoli and D. B. de Araujo, Imaging the Addicted Brain, 2016, vol. 129, pp. 157–185, DOI: 10.1016/bs. irn.2016.06.005.

    Article  CAS  Google Scholar 

  17. F. X. Vollenweider and M. Kometer, Nat. Rev. Neurosci., 2010, 11, 642–651, DOI: 10.1038/nrn2884.

    Article  CAS  Google Scholar 

  18. I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, Academic Press, London, 1965.

    Google Scholar 

  19. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, 2009.

  20. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215–241, DOI: 10.1007/s00214-007-0310-x.

    Article  CAS  Google Scholar 

  21. J. Preat, P. Loos, X. Assfeld, D. Jacquemin and E. A. Perpete, Int. J. Quantum Chem., 2007, 107, 574–585, DOI: 10.1002/qua.21182.

    Article  CAS  Google Scholar 

  22. G. A. Zhurko and D. A. Zhurko, Chemcraft, Version 1.8, http://www.chemcraftprog.com/.

  23. V. Stefov, L. Pejov and B. Soptrajanov, J. Mol. Struct., 2003, 651, 231–243, DOI: 10.1016/S0022-2860(03)00293-X.

    Article  Google Scholar 

  24. T. Steiner, Acta Crystallogr., Sect. D: Biol. Crystallogr., 1998, 54, 584–588, DOI: 10.1107/S090744499701500X.

    Article  CAS  Google Scholar 

  25. M. Harigai, M. Kataoka and Y. Imamoto, J. Am. Chem. Soc., 2006, 128, 10646–10647, DOI: 10.1021/ja062125v.

    Article  CAS  Google Scholar 

  26. G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford Science Publications, 1999.

    Google Scholar 

  27. M. J. Kamlet and R. W. Taft, J. Am. Chem. Soc., 1976, 98, 377–383, DOI: 10.1021/ja00418a009.

    Article  CAS  Google Scholar 

  28. R. Klein, I. Tatischeff, M. Bazin and R. Santus, J. Phys. Chem., 1981, 85, 670–677, DOI: 10.1021/ j150606a012.

    Article  CAS  Google Scholar 

  29. I. Gonzalo and T. Montoro, J. Phys. Chem., 1985, 89, 1608–1612, DOI: 10.1021/j100255a013.

    Article  CAS  Google Scholar 

  30. J. S. Simonoff, Smoothing Methods in Statistics, Springer. New York, 1996.

    Book  Google Scholar 

  31. C. Wakai and M. Nakahara, J. Chem. Phys., 1997, 106, 7512–7518.

    Article  CAS  Google Scholar 

  32. H. Bartnicka, I. Bojanowska and M. Kalinowski, Aust. J. Chem., 1993, 46, 31–36.

    Article  Google Scholar 

  33. L. P. Mcmahon, W. J. Colucci, M. L. Mclaughlin and M. D. Barkley, J. Am. Chem. Soc., 1992, 114, 8442–8448, DOI: 10.1021/ja00048a014.

    Article  CAS  Google Scholar 

  34. O. Julien, G. Wang, A. Jonckheer, Y. Engelborghs and B. D. Sykes, Proteins: Struct., Funct., Bioinf., 2012, 80, 239–245, DOI: 10.1002/prot.23198.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Joseph Lesniewski and Professor Kaveh Jorabchi for their assistance with the plasma-assisted chemical ionization mass spectrometry. We are very grateful to the US National Science Foundation for its support of this research through grant CHE-1502856.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Weiss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safko, T.M., Kertesz, M. & Weiss, R.G. Photophysics of N,N-dimethyl-3-(1-indolyl)propan-1-ammonium chloride and related derivatives. Photochem Photobiol Sci 16, 1546–1555 (2017). https://doi.org/10.1039/c7pp00199a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00199a

Navigation