Skip to main content
Log in

Photophysical properties of hexyl diethylaminohydroxybenzoylbenzoate (Uvinul A Plus), a UV-A absorber

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Hexyl diethylaminohydroxybenzoylbenzoate (DHHB, Uvinul A Plus) is a photostable UV-A absorber. The photophysical properties of DHHB have been studied by obtaining the transient absorption, total emission, phosphorescence and electron paramagnetic resonance spectra. DHHB exhibits an intense phosphorescence in a hydrogen-bonding solvent (e.g., ethanol) at 77 K, whereas it is weakly phosphorescent in a non-hydrogen-bonding solvent (e.g., 3-methylpentane). The triplet–triplet absorption and EPR spectra for the lowest excited triplet state of DHHB were observed in ethanol, while they were not observed in 3-methylpentane. These results are explained by the proposal that in the benzophenone derivatives possessing an intramolecular hydrogen bond, intramolecular proton transfer is an efficient mechanism of the very fast radiationless decay from the excited singlet state. The energy level of the lowest excited triplet state of DHHB is higher than those of the most widely used UV-B absorbers, octyl methoxycinnamate (OMC) and octocrylene (OCR). DHHB may act as a triplet energy donor for OMC and OCR in the mixtures of UV-A and UV-B absorbers. The bimolecular rate constant for the quenching of singlet oxygen by DHHB was determined by measuring the near-IR phosphorescence of singlet oxygen. The photophysical properties of diethylaminohydroxybenzoylbenzoic acid (DHBA) have been studied for comparison. It is a closely related building block to assist in interpreting the observed data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Shaath, Sunscreen Evolution, in Sunscreens: Regulations and Commercial Development, ed. N. A. Shaath, Taylor & Francis, Boca Raton, 2005, pp. 3–17.

    Chapter  Google Scholar 

  2. N. R. Attard, and P. Karran, UVA photosensitization of thiopurines and skin cancer in organ transplant recipients, Photochem. Photobiol. Sci., 2012, 11, 62–68.

    Article  CAS  PubMed  Google Scholar 

  3. A. Fourtanier, D. Moyal, and S. Seite, UVA filters in sun-protection products: regulatory and biological aspects, Photochem. Photobiol. Sci., 2012, 11, 81–89.

    Article  CAS  PubMed  Google Scholar 

  4. G. P. Pfeifer, and A. Besaratinia, UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer, Photochem. Photobiol. Sci., 2012, 11, 90–97.

    Article  CAS  PubMed  Google Scholar 

  5. B. Epe, DNA damage spectra induced by photosensitization, Photochem. Photobiol. Sci., 2012, 11, 98–106.

    Article  CAS  PubMed  Google Scholar 

  6. E. Sage, P.-M. Girard, and S. Francesconi, Unravelling UVA-induced mutagenesis, Photochem. Photobiol. Sci., 2012, 11, 74–80.

    Article  CAS  PubMed  Google Scholar 

  7. M. Yamaji, and M. Kida, Photothermal tautomerization of a UV sunscreen (4-tert-butyl-4′-methoxydibenzoylmethane) in acetonitrile studied by steady-state and laser flash photolysis, J. Phys. Chem. A., 2013, 117, 1946–1951.

    Article  CAS  PubMed  Google Scholar 

  8. J. Kockler, M. Oelgemöller, S. Robertson, and B. D. Glass, Influence of titanium dioxide particle size on the photostability of the chemical UV-filters butyl methoxy dibenzoylmethane and octocrylene in a microemulsion, Cosmetics., 2014, 1, 128–139.

    Article  Google Scholar 

  9. L. da Pinto Silva, P. J. O. Ferreira, D. J. R. Duarte, M. S. Miranda, and J. C. G. Esteves da Silva, Structural, energetic, and UV–Vis spectral analysis of UVA filter 4-tert-butyl-4′-methoxydibenzoylmethane, J. Phys. Chem. A., 2014, 118, 1511–1518.

    Article  CAS  Google Scholar 

  10. A. Kikuchi, Y. Nakabai, N. Oguchi-Fujiyama, K. Miyazawa, and M. Yagi, Energy-donor phosphorescence quenching study of triplet–triplet energy transfer between UV absorbers, J. Lumin., 2015, 166, 203–208.

    Article  CAS  Google Scholar 

  11. M. H. Chisholm, C. B. Durr, T. L. Gustafson, W. T. Kender, T. F. Spilker, and P. J. Young, Electronic and spectroscopic properties of avobenzone derivatives attached to Mo2 quadruple bonds: Suppression of the photochemical enol-to-keto transformation, J. Am. Chem. Soc., 2015, 137, 5155–5162.

    Article  CAS  PubMed  Google Scholar 

  12. N. A. Shaath, The chemistry of ultraviolet filters, in Sunscreens, Regulations and Commercial Development, ed. N. A. Shaath, Taylor & Francis, Boca Raton, 2005, pp. 217–238.

    Chapter  Google Scholar 

  13. C. A. Bonda, The photostability of organic sunscreen actives: A review, in Sunscreens, Regulations and Commercial Development, ed. N. A. Shaath, Taylor & Francis, Boca Raton, 2005, pp. 321–349.

    Google Scholar 

  14. E. Damiani, L. Rosati, R. Castagna, P. Carloni, and L. Greci, Changes in ultraviolet absorbance and hence in protective efficacy against lipid peroxidation of organic sunscreens after UVA irradiation, J. Photochem. Photobiol., B., 2006, 82, 204–213.

    Article  CAS  Google Scholar 

  15. E. Damiani, W. Baschong, and L. Greci, UV-Filter combinations under UV-A exposure: Concomitant quantification of over-all spectral stability and molecular integrity, J. Photochem. Photobiol., B., 2007, 87, 95–104.

    Article  CAS  Google Scholar 

  16. B. Herzog, M. Wehrle, and K. Quass, Photostability of UV absorber systems in sunscreens, Photochem. Photobiol., 2009, 85, 869–878.

    Article  CAS  PubMed  Google Scholar 

  17. C. Mendrok-Edinger, K. Smith, A. Janssen, and J. Vollhardt, The quest for avobenzone stabilizers and sunscreen photostability, Cosmet. Toiletries., 2009, 124, 47–54.

    CAS  Google Scholar 

  18. S. Scalia, and M. Mezzena, Photostabilization effect of quercetin on the UV filter combination, butyl methoxydibenzoylmethane–octyl methoxycinnamate, Photochem. Photobiol., 2010, 86, 273–278.

    Article  CAS  PubMed  Google Scholar 

  19. J. J. Vallejo, M. Mesa, and C. Gallardo, Evaluation of the avobenzone photostability in solvents used in cosmetic formulations, Vitae., 2011, 18, 63–71.

    CAS  Google Scholar 

  20. J. Kockler, M. Oelgemöller, S. Robertson, and B. D. Glass, Photostability of sunscreens, J. Photochem. Photobiol., C., 2012, 13, 91–110.

    Article  CAS  Google Scholar 

  21. N. A. Shaath, The chemistry of ultraviolet filters, in Principles and Practice of Photoprotection, ed. S. Q. Wang and H. W. Lim, Springer, Cham, Switzerland, 2016, pp. 143–157.

    Chapter  Google Scholar 

  22. C. A. Bonda, and D. Lott, Sunscreen photostability, in Principles and Practice of Photoprotection, ed. S. Q. Wang and H. W. Lim, Springer, Cham, Switzerland, 2016, pp. 247–273.

    Chapter  Google Scholar 

  23. B. Herzog, D. Hueglin, and U. Osterwalder, New sunscreen actives, in Sunscreens, Regulations and Commercial Development, ed. N. A. Shaath, Taylor & Francis, Boca Raton, 2005, pp. 291–320.

    Google Scholar 

  24. C. Tuchinda, H. W. Lim, U. Osterwalder, and A. Rougier, Novel Emerging Sunscreen Technologies, Derlmatol. Clin., 2006, 24, 105–117.

    Article  CAS  Google Scholar 

  25. G. Vielhaber, S. Grether-Beck, O. Koch, W. Johncock, and J. Krutmann, Sunscreens with an absorption maximum of ≥360 nm provide optimal protection against UVA1-induced expression of matrix metalloproteinase-1, interleukin-1, and interleukin-6 in human dermal fibroblasts, Photochem. Photobiol. Sci., 2006, 5, 275–282.

    Article  CAS  PubMed  Google Scholar 

  26. A. Gallardo, J. Teixidó, R. Miralles, M. Raga, A. Guglietta, F. Marquillas, J. Sallarès, and S. Nonell, Dose-dependent progressive sunscreens. A new strategy for photoprotection?, Photochem. Photobiol. Sci., 2010, 9, 530–534.

    Article  CAS  PubMed  Google Scholar 

  27. R. Jansen, U. Osterwalder, S. Q. Wang, M. Burnett, and H. W. Lim, Photoprotection: Part II. Sunscreen: Development, efficacy, and controversies, J. Am. Acad. Dermatol., 2013, 69, 867.e1–867.e14.

    Article  Google Scholar 

  28. B. P. Binks, P. D. I. Fletcher, A. J. Johnson, I. Marinopoulos, J. Crowther, and M. A. Thompson, How the sun protection factor (SPF) of sunscreen films change during solar irradiation, J. Photochem. Photobiol., A., 2017, 333, 186–199.

    Article  CAS  Google Scholar 

  29. N. A. Shaath, Ultraviolet filters, Photochem. Photobiol. Sci., 2010, 9, 464–469.

    Article  CAS  PubMed  Google Scholar 

  30. U. Osterwalder, M. Sohn, and B. Herzog, Global state of sunscreens, Photodermatol., Photoimmunol. Photomed., 2014, 30, 62–80.

    Article  Google Scholar 

  31. S. Daly, H. Ouyang, and P. Maitra, Chemistry of Sunscreens, in Principles and Practice of Photoprotection, ed. S. Q. Wang and H. W. Lim, Springer, Cham, Switzerland, 2016, pp. 159–178.

    Chapter  Google Scholar 

  32. V. Lhiaubet-Vallet, M. Marin, O. Jimenez, O. Gorchs, C. Trullas, and M. A. Miranda, Filter-filter interactions. Photostabilization, triplet quenching and reactivity with singlet oxygen, Photochem. Photobiol. Sci., 2010, 9, 552–558.

    Article  CAS  PubMed  Google Scholar 

  33. C. M. Kawakami, L. N. C. Máximo, B. B. Fontanezi, R. Santana da Silva, and L. R. Gaspar, Diethylamino hydroxybenzoyl hexyl benzoate (DHHB) as additive to the UV filter avobenzone in cosmetic sunscreen formulations–Evaluation of the photochemical behavior and photostabilizing effect, Eur. J. Pharm. Sci., 2017, 99, 299–309.

    Article  CAS  PubMed  Google Scholar 

  34. A. Kikuchi, K. Shibata, R. Kumasaka, and M. Yagi, Optical and time-resolved electron paramagnetic resonance studies of the excited states of a UV-B absorber (4-methylbenzylidene)camphor, J. Phys. Chem. A., 2013, 117, 1413–1419.

    Article  CAS  PubMed  Google Scholar 

  35. A. Kikuchi, K. Shibata, R. Kumasaka, and M. Yagi, Excited states of menthyl anthranilate: a UV-A absorber, Photochem. Photobiol. Sci., 2013, 12, 246–253.

    Article  CAS  PubMed  Google Scholar 

  36. T. Tsuchiya, A. Kikuchi, N. Oguchi-Fujiyama, K. Miyazawa, and M. Yagi, Photoexcited triplet states of UV-B absorbers: ethylhexyl triazone and diethylhexylbutamido triazone, Photochem. Photobiol. Sci., 2015, 14, 807–814.

    Article  CAS  PubMed  Google Scholar 

  37. K. Sugiyama, T. Tsuchiya, A. Kikuchi, and M. Yagi, Optical and electron paramagnetic resonance studies of the excited triplet states of UV-B absorbers: 2-ethylhexyl salicylate and homo menthyl salicylate, Photochem. Photobiol. Sci., 2015, 14, 1651–1659.

    Article  CAS  PubMed  Google Scholar 

  38. S. Pattanaargson, T. Munhapol, P. Hirunsupachot, and P. Luangthongaram, Photoisomerization of octyl methoxycinnamate, J. Photochem. Photobiol., A., 2004, 161, 269–274.

    Article  CAS  Google Scholar 

  39. S.-Y. Hou, W. M. Hetherington III, G. M. Korenowski, and K. B. Eisenthal, Intramolecular proton transfer and energy relaxation in ortho-hydroxybenzophenone, Chem. Phys. Lett., 1979, 68, 282–284.

    Article  CAS  Google Scholar 

  40. M. Wiechmann, H. Port, W. Frey, F. Lärmer, and T. Elsässer, Time-resolved spectroscopy on ultrafast proton transfer in 2-(2′-hydroxy-5′-methylphenyl)benzotriazole in liquid and polymer environments, J. Phys. Chem., 1991, 95, 1918–1923.

    Article  CAS  Google Scholar 

  41. S. J. Formosinho, and L. G. Arnaut, Excited-state proton transfer reactions II. Intramolecular reactions, J. Photochem. Photobiol., A., 1993, 75, 21–48.

    Article  CAS  Google Scholar 

  42. C. Chudoba, E. Riedle, M. Pfeiffer, and T. Elsaesser, Vibrational coherence in ultrafast excited state proton transfer, Chem. Phys. Lett., 1996, 263, 622–628.

    Article  CAS  Google Scholar 

  43. T. Okazaki, N. Hirota, and M. Terazima, Picosecond time-resolved transient grating method for heat detection: Excited-state dynamics of FeCl3 and o-hydroxybenzophenone in aqueous solution, J. Phys. Chem. A., 1997, 101, 650–655.

    Article  CAS  Google Scholar 

  44. A. A. Lamola, and L. J. Sharp, Environmental effects on the excited states of o-hydroxy aromatic carbonyl compounds, J. Phys. Chem., 1966, 70, 2634–2638.

    Article  CAS  Google Scholar 

  45. T. N. V. Karsili, B. Marchetti, M. N. R. Ashfold, and W. Domcke, Ab initio study of potential ultrafast internal conversion routes in oxybenzone, caffeic acid, and ferulic acid: implications for sunscreens, J. Phys. Chem. A., 2014, 118, 11999–12010.

    Article  CAS  PubMed  Google Scholar 

  46. P. Kottis, and R. Lefebvre, Calculation of the electron spin resonance line shape of randomly oriented molecules in a triplet state. I. The Δm = 2 transition with a constant linewidth, J. Chem. Phys., 1963, 39, 393–403.

    Article  CAS  Google Scholar 

  47. N. J. Turro, V. Ramamurthy, and J. C. Scaiano, Modern Molecular Photochemistry of Organic Molecules, University Science Books, Sausalito, 2010.

    Google Scholar 

  48. D. G. Fresnadillo, and S. Lacombe, Reference photosensitizers for the production of singlet oxygen, in Singlet Oxygen: Applications in Biosciences and Nanosciences, ed. S. Nonell and C. Flors, The Royal Society of Chemistry, Cambridge, UK, 2016, vol. 1, pp. 105–143.

    Article  Google Scholar 

  49. S. Nonell, and C. Flors, Steady-State and Time-Resolved Singlet Oxygen Phosphorescence Detection in the Near-IR, in Singlet Oxygen: Applications in Biosciences and Nanosciences, ed. S. Nonell and C. Flors, The Royal Society of Chemistry, Cambridge, UK, 2016, vol. 2, pp. 7–26.

    Article  Google Scholar 

  50. M. Montalti, A. Credi, L. Prodi, and M. T. Gandolfi, Handbook of Photochemistry, Tayler & Francis, Boca Raton, 2006.

    Book  Google Scholar 

  51. R. Schmidt, Deactivation of O2(1Δg) singlet oxygen by carotenoids: Internal conversion of excited encounter complexes, J. Phys. Chem. A., 2004, 108, 5509–5513.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant Numbers 23241034 and 24655060. This work was also supported in part by the Takahashi Industrial and Economic Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mikio Yagi or Azusa Kikuchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamoto, Y., Yagi, M., Oguchi-Fujiyama, N. et al. Photophysical properties of hexyl diethylaminohydroxybenzoylbenzoate (Uvinul A Plus), a UV-A absorber. Photochem Photobiol Sci 16, 1449–1457 (2017). https://doi.org/10.1039/c7pp00164a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00164a

Navigation