Skip to main content
Log in

Fluorescence lifetime microscopy reveals the biologically-related photophysical heterogeneity of oxyblepharismin in light-adapted (blue) Blepharisma japonicum cells

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The step-up photophobic response of the heterotrich ciliate Blepharisma japonicum is mediated by a hypericinic pigment, blepharismin, which is not present in any of the known six families of photoreceptors, namely rhodopsins, phytochromes, xanthopsins, cryptochromes, phototropins, and BLUF proteins. Upon irradiation, native cells become light-adapted (blue) by converting blepharismin into the photochemically stable oxyblepharismin (OxyBP). So far, OxyBP has been investigated mainly from a photophysical point of view in vitro, either alone or complexed with proteins. In this work, we exploit the vivid fluorescence of OxyBP to characterize its lifetime emission in blue B. Japonicum cells, on account of the recognized role of the fluorescence lifetime to provide physicochemical insights into the fluorophore environment at the nanoscale. In a biological context, OxyBP modifies its emission lifetime as compared to isotropic media. The phasor approach to fluorescence lifetime microscopy in confocal mode highlights that fluorescence originates from two excited states, whose relative balance changes throughout the cell body. Additionally, Cilia and kinetids, i.e., the organelles involved in photomovement, display lifetime asymmetry between the anterior and posterior part of the cell. From these data, some hypotheses on the phototransduction mechanism are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sgarbossa, G. Checcucci and F. Lenci, Photoreception and photomovements of microorganisms, Photochem. Photobiol. Sci., 2002, 1, 459–467.

    Article  CAS  PubMed  Google Scholar 

  2. K. Sobierajska, H. Fabczak and S. Fabezak, Photosensory transduction in unicellular eukaryotes: A comparison between related ciliates Blepharisma japonicum and Stentor coeruleus and photoreceptor cells of higher organisms, J. Photochem. Photobiol., B, 2006, 83, 163–171.

    Article  CAS  Google Scholar 

  3. G. Checcucci, R. S. Shoemaker, E. Bini, R. Cerny, N. B. Tao, J. S. Hyon, D. Gioffre, F. Ghetti, F. Lenci and P. S. Song, Chemical structure of blepharismin, the photosensor pigment for Blepharisma japonicum, J. Am. Chem. Soc., 1997, 119, 5762–5763.

    Article  CAS  Google Scholar 

  4. M. Maeda, H. Naoki, T. Matsuoka, Y. Kato, H. Kotsuki, K. Utsumi and T. Tanaka, Blepharismin 1-5, novel photo- receptor from the unicellular organism Blepharisma japoni- cum, Tetrahedron Lett., 1997, 38, 7411–7414.

    Article  CAS  Google Scholar 

  5. T. Matsuoka, Y. Murakami and Y. Kato, Isolation of ble- pharismin-binding-200 kDa protein responsible for behav- ior in blepharisma, Photochem. Photobiol., 1993, 57, 1042–1047.

    Article  CAS  Google Scholar 

  6. P. Plaza, M. Mahet, M. M. Martin, N. Angelini, M. Malatesta, G. Checcucci and F. Lenci, Spectroscopic study of the chromophore-protein association and primary photoinduced events in the photoreceptor of Blepharisma japonicum, Photochem. Photobiol. Sci., 2005, 4, 754–761.

    Article  CAS  PubMed  Google Scholar 

  7. G. Checcucci, G. Damato, F. Ghetti and F. Lenci, Action Spectra of the photophobic response of blue and red forms of blepharisma-japonicum, Photochem. Photobiol., 1993, 57, 686–689.

    Article  CAS  Google Scholar 

  8. D. Spitzner, G. Hofle, I. Klein, S. Pohlan, D. Ammermann and L. Jaenicke, On the structure of oxyblepharismin and its formation from blepharismin, Tetrahedron Lett., 1998, 39, 4003–4006.

    Article  CAS  Google Scholar 

  9. M. Mahet, P. Plaza, M. M. Martin, G. Checcucci and F. Lenci, Primary photoprocesses in oxyblepharismin inter- acting with its native protein partner, J. Photochem. Photobiol., A, 2007, 185, 345–353.

    Article  CAS  Google Scholar 

  10. P. Plaza, M. Mahet, M. M. Martin, G. Checcucci and F. Lenci, Target analysis of primary photoprocesses involved in the oxyblepharismin-binding protein, J. Phys. Chem. B, 2007, 111, 690–696.

    Article  CAS  PubMed  Google Scholar 

  11. J. Brazard, C. Ley, F. Lacombat, P. Plaza, M. M. Martin, G. Checcucci and F. Lenci, Primary Photoprocesses Involved in the Sensory Protein for the Photophobic Response of Blepharisma japonicum, J. Phys. Chem. B, 2008, 112, 15182–15194.

    Article  CAS  PubMed  Google Scholar 

  12. T. Youssef, J. Brazard, C. Ley, F. Lacombat, P. Plaza, M. M. Martin, A. Sgarbossa, G. Checcucci and F. Lenci, Steady-state and femtosecond photoinduced processes of blepharismins bound to alpha-crystallin, Photochem. Photobiol. Sci., 2008, 7, 844–853.

    Article  CAS  PubMed  Google Scholar 

  13. T. Matsuoka, D. Tokumori, H. Kotsuki, M. Ishida, M. Matsushita, S. Kimura, T. Itoh and G. Checcucci, Analyses of structure of photoreceptor organelle and ble- pharismin-associated protein in unicellular eukaryote Blepharisma, Photochem. Photobiol., 2000, 72, 709–713.

    Article  CAS  PubMed  Google Scholar 

  14. T. Matsuoka, M. Sato, M. Maeda, H. Naoki, T. Tanaka and H. Kotsuki, Localization of blepharismin photosensors and identification of a photoreceptor complex mediating the step-up photophobic response of the unicellular organism, Blepharisma, Photochem. Photobiol., 1997, 65, 915–921.

    Article  CAS  Google Scholar 

  15. T. Matsuoka, Distribution of Photoreceptors Inducing Ciliary Reversal and Swimming Acceleration in Blepharisma-Japonicum, J. Exp. Zool., 1983, 225, 337–340.

    Article  Google Scholar 

  16. G. Colombetti, G. Checcucci, S. Lucia, C. Usai, P. Ramoino, P. Bianchini, M. Pesce, G. Vicidomini and A. Diaspro, Evidence for ciliary pigment localization in colored ciliates and implications for their photosensory transduction chain: A confocal microscopy study, Microsc. Res. Tech., 2007, 70, 1028–1033.

    Article  PubMed  Google Scholar 

  17. D. M. Jameson, E. Gratton and R. D. Hall, The measure- ment and analysis of heterogeneous emissions by multi- frequency phase and modulation fluorometry, Appl. Spectrosc. Rev., 1984, 20, 55–106.

    Article  CAS  Google Scholar 

  18. A. Battisti, M. A. Digman, E. Gratton, B. Storti, F. Beltram and R. Bizzarri, Intracellular pH measurements made simple by fluorescent protein probes and the phasor approach to fluorescence lifetime imaging, Chem. Commun., 2012, 48, 5127–5129.

    Article  CAS  Google Scholar 

  19. A. Battisti, S. Panettieri, G. Abbandonato, E. Jacchetti, F. Cardarelli, G. Signore, F. Beltram and R. Bizzarri, Imaging intracellular viscosity by a new molecular rotor suitable for phasor analysis of fluorescence lifetime, Anal. Bioanal. Chem., 2013, 405, 6223–6233.

    Article  CAS  PubMed  Google Scholar 

  20. G. Ferri, L. Nucara, T. Biver, A. Battisti, G. Signore and R. Bizzarri, Organization of inner cellular components as reported by a viscosity-sensitive fluorescent Bodipy probe suitable for phasor approach to FLIM, Biophys. Chem., 2016, 208, 17–25.

    Article  CAS  PubMed  Google Scholar 

  21. M. Koenig, G. Bottari, G. Brancato, V. Barone, D. M. Guldi and T. Torres, Unraveling the peculiar modus operandi of a new class of solvatochromic fluorescent molecular rotors by spectroscopic and quantum mechanical methods, Chem. Sci., 2013, 4, 2502–2511.

    Article  CAS  Google Scholar 

  22. D. Gioffre, F. Ghetti, F. Lenci, C. Paradiso, R. K. Dai and P. S. Song, Isolation and Characterization of the Presumed Photoreceptor Protein of Blepharisma-Japonicum, Photochem. Photobiol., 1993, 58, 275–279.

    Article  CAS  Google Scholar 

  23. R. A. Velapoldi and H. H. Tonnesen, Corrected emission spectra and quantum yields for a series of fluorescent com- pounds in the visible spectral region, J. Fluoresc., 2004, 14, 465–472.

    Article  CAS  PubMed  Google Scholar 

  24. A. H. Clayton, Q. S. Hanley and P. J. Verveer, Graphical rep- resentation and multicomponent analysis of single-fre- quency fluorescence lifetime imaging microscopy data, J. Microsc., 2004, 213, 1–5.

    Article  CAS  PubMed  Google Scholar 

  25. M. Stefl, N. G. James, J. A. Ross and D. M. Jameson, Applications of phasors to in vitro time-resolved fluo- rescence measurements, Anal. Biochem., 2011, 410, 62–69.

    Article  CAS  PubMed  Google Scholar 

  26. K. M. Hirshfield, D. Toptygin, B. S. Packard and L. Brand, Dynamic fluorescence measurements of 2-state systems - applications to Calcium-chelating probes, Anal. Biochem., 1993, 209, 209–218.

    Article  CAS  PubMed  Google Scholar 

  27. M. A. Digman, V. R. Caiolfa, M. Zamai and E. Gratton, The phasor approach to fluorescence lifetime imaging analysis, Biophys. J., 2008, 94, L14–L16.

    Article  CAS  PubMed  Google Scholar 

  28. T. Yamazaki, N. Ohta, I. Yamazaki and P. S. Song, Excited-State Properties of Hypericin - Electronic-Spectra and Fluorescence Decay Kinetics, J. Phys. Chem., 1993, 97, 7870–7875.

    Article  CAS  Google Scholar 

  29. A. L. Shoaf and C. A. Bayse, TD-DFT and structural investi- gation of natural photosensitive phenanthroperylene quinone derivatives, New J. Chem., 2016, 40, 413–422.

    Article  CAS  Google Scholar 

  30. H. Weitman, M. Roslaniec, A. A. Frimer, M. Afri, D. Freeman, Y. Mazur and B. Ehrenberg, Solvatochromic effects in the electronic absorption and nuclear magnetic resonance spectra of hypericin in organic solvents and in lipid bilayers, Photochem. Photobiol., 2001, 73, 110–118.

    Article  CAS  PubMed  Google Scholar 

  31. F. Han, J. B. Zhang, G. H. Chen and X. H. Wei, Density, Viscosity, and Excess Properties for Aqueous Poly(ethylene glycol) Solutions from (298.15 to 323.15) K, J. Chem. Eng. Data, 2008, 53, 2598–2601.

    Article  CAS  Google Scholar 

  32. C. Reichardt, Solvatochromic Dyes as Solvent Polarity Indicators, Chem. Rev., 1994, 94, 2319–2358.

    Article  CAS  Google Scholar 

  33. M. Kohantorabi, M. Fakhraee, H. Salari and M. R. Gholami, Probing solvent-solvent and solute-solvent interactions in surfactant binary mixtures: solvatochromic parameters, pre- ferential solvation, and quantum theory of atoms in mole- cules analysis, RSC Adv., 2016, 6, 18515–18524.

    Article  CAS  Google Scholar 

  34. P. Singh and S. Pandey, Solute-solvent interactions within aqueous poly(ethylene glycol): solvatochromic probes for empirical determination and preferential solvation, Green Chem., 2007, 9, 254–261.

    Article  CAS  Google Scholar 

  35. L. E. Hinman and P. J. Sammak, Intensity modulation of pseudocolor images, BioTechniques, 1998, 25, 124–128.

    Article  CAS  PubMed  Google Scholar 

  36. J. W. Petrich, Excited-state intramolecular H-atom transfer in nearly symmetrical perylene quinones: hypericin, hypo- crellin, and their analogues, Int. Rev. Phys. Chem., 2000, 19, 479–500.

    Article  CAS  Google Scholar 

  37. K. Das, D. S. English and J. W. Petrich, Solvent dependence on the intramolecular excited-state proton or hydrogen atom transfer in hypocrellin, J. Am. Chem. Soc., 1997, 119, 2763–2764.

    Article  CAS  Google Scholar 

  38. A. V. Smirnov, K. Das, D. S. English, Z. Wan, G. A. Kraus and J. W. Petrich, Excited-state intramolecular H atom transfer of hypericin and hypocrellin A investigated by fluorescence upconversion, J. Phys. Chem. A, 1999, 103, 7949–7957.

    Article  CAS  Google Scholar 

  39. N. Angelini, R. Cubeddu, F. Ghetti, F. Lenci, P. Taroni and G. Valentini, In vivo Spectroscopic Study of Photoreceptor Pigments of Blepharisma-Japonicum Red and Blue Cells, Biochim. Biophys. Acta, Bioenerg., 1995, 1231, 247–254.

    Article  Google Scholar 

  40. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer Science, New York, USA, 3rd edn, 2006.

    Book  Google Scholar 

  41. B. Valeur, Molecular Fluorescence: Principles and Applications, Wiley-VCH, Weinheim, 1st edn, 2001.

    Book  Google Scholar 

Download references

Acknowledgments

The authors thank Dr Giuliano Colombetti, Dr Sabina Lucia, and Mr Alberto Pietrangeli (Institute of Biophysics–CNR, Pisa) for technical help and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bizzarri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Checcucci, G., Storti, B., Ghetti, F. et al. Fluorescence lifetime microscopy reveals the biologically-related photophysical heterogeneity of oxyblepharismin in light-adapted (blue) Blepharisma japonicum cells. Photochem Photobiol Sci 16, 1502–1511 (2017). https://doi.org/10.1039/c7pp00072c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00072c

Navigation