Skip to main content
Log in

Luminescence spectroscopy of chalcogen substituted rhodamine cations in vacuo

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Intrinsic optical properties of several rhodamine cations were probed by measuring their dispersed fluorescence spectra in vacuo. Three different rhodamine structures were investigated, each with four different chalcogen heteroatoms. Fluorescence band maxima were blue-shifted by between 0.15 and 0.20 eV (1200-1600 cm4) relative to previous solution-phase measurements. Trends in emission wavelengths and fluorescence quantum yields previously measured in solution are generally reproduced in the gas phase, confirming the intrinsic nature of these effects. One important exception is gas-phase brightness of the Texas Red analogues, which is significantly higher than the other rhodamine structures studied, despite having similar fluorescence quantum yields in solution. These results expand the library of fluorophores for which gas-phase photophysical data is available, and will aid in the design of experiments utilizing gas-phase structural biology methods such as Forster resonance energy transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Frankevich, X. Guan, M. Dashtiev and R. Zenobi, Laser-induced fluorescence of trapped gas-phase molecular ions generated by internal-source matrix-assisted laser desorp-tion/ionization in a Fourier transform ion cyclotron resonance mass spectrometer, Eur. J. Mass Spectrom., 2005, 11, 475–482.

    Article  CAS  Google Scholar 

  2. M. Kordel, D. Schooss, C. Neiss, L. Walter and M. M. Kappes, Laser-induced fluorescence of Rhodamine 6G. cations in the gas phase: a lower bound to the lifetime of the first triplet state, J. Phys. Chem. A, 2010, 114, 5509–5514.

    Article  CAS  Google Scholar 

  3. M. W. Forbes and R. A. Jockusch, Gas-phase fluorescence excitation and emission spectroscopy of three xanthene dyes (rhodamine 575, rhodamine 590 and rhodamine 6G) in a quadrupole ion trap mass spectrometer, J. Am. Soc. Mass Spectrom., 2011, 22, 93–109.

    Article  CAS  Google Scholar 

  4. R. Zenobi, Coming of Age: Gas-Phase Structural Information on Biomolecules by FRET, Anal. Chem., 2015, 87, 7497–7498.

    Article  CAS  Google Scholar 

  5. A. S. Danell and J. H. Parks, FRET. measurements of trapped oligonucleotide duplexes, Int. J. Mass Spectrom., 2003, 229, 35–45.

    Article  CAS  Google Scholar 

  6. M. Dashtiev, V. Azov, V. Frankevich, L. Scharfenberg and R. Zenobi, Clear evidence of fluorescence resonance energy transfer in gas-phase ions, J. Am. Soc. Mass Spectrom., 2005, 16, 1481–1487.

    Article  CAS  Google Scholar 

  7. F. O. Talbot, A. Rullo, H. Yao and R. A. Jockusch, Fluorescence resonance energy transfer in gaseous, mass-selected polyproline peptides, J. Am. Chem. Soc, 2010, 132, 16156–16164.

    Article  CAS  Google Scholar 

  8. S. Daly, F. Poussigue, A.-L. Simon, L. MacAleese, F. Bertorelle, F. Chirot, R. Antoine and P. Dugourd, Action-FRET: probing the molecular conformation of mass-selected gas-phase peptides with Forster resonance energy transfer detected by acceptor-specific fragmentation, Anal. Chem., 2014, 86, 8798–8804.

    Article  CAS  Google Scholar 

  9. M. F. Czar, F. Zosel, I. Konig, D. Nettels, B. Wunderlich, B. Schuler, A. Zarrine-Afsar and R. A. Jockusch, Gas-phase FRET. efficiency measurements to probe the conformation of mass-selected proteins, Anal. Chem., 2015, 87, 7559–7565.

    Article  CAS  Google Scholar 

  10. P. D. McQueen, S. Sagoo, H. Yao and R. A. Jockusch, On the intrinsic photophysics of fluorescein, Angew. Chem., Int. Ed., 2010, 49, 9193–9196.

    Article  CAS  Google Scholar 

  11. H. Yao and R. A. Jockusch, Fluorescence and Electronic Action Spectroscopy of Mass-Selected Gas-Phase Fluorescein, 2, 7-DichIorofluorescein, and 2, 7-Difluorofluorescein Ions, J. Phys. Chem. A, 2013, 117, 1351–1359.

    Article  CAS  Google Scholar 

  12. R. J. Nieckarz, J. Oomens, G. Berden, P. Sagulenko and R. Zenobi, Infrared multiple photon dissociation (IRMPD) spectroscopy of oxazine dyes, Phys. Chem. Chem. Phys., 2013, 15, 5049–5056.

    Article  CAS  Google Scholar 

  13. S. V. Sciuto and R. A. Jockusch, The intrinsic photophysics of gaseous ethidium ions, J. Photochem. Photobiol, A, 2015, 311, 186–192.

    Article  CAS  Google Scholar 

  14. M. W. Forbes and R. A. Jockusch, Deactivation pathways of an isolated green fluorescent protein model chromophore studied by electronic action spectroscopy, J. Am. Chem. Soc, 2009, 131, 17038–17039.

    Article  CAS  Google Scholar 

  15. C. R. Mooney, D. A. Horke, A. S. Chatterley, A. Simperler, H. H. Fielding and J. R. Verlet, Taking the green fluorescence out of the protein: dynamics of the isolated GFP. chromophore anion, Chem. Sci., 2013, 4, 921–927.

    Article  CAS  Google Scholar 

  16. M. Stockett, J. Houmøller and S. Brondsted Nielsen, Nile blue shows its true colors in gas-phase absorption and luminescence ion spectroscopy, J. Chem. Phys., 2016, 145, 104303.

  17. M. H. Stockett, M. Boesen, J. Houmoller and S. Brondsted Nielsen, Communication: Accessing the intrinsic nature of electronic transitions from gas-phase spectroscopy of molecular ion - zwitterion complexes, Angew. Chem., Int. Ed., 2017, 56, 3490–3495.

    Article  CAS  Google Scholar 

  18. Q. Bian, M. W. Forbes, F. O. Talbot and R. A. Jockusch, Gas-phase fluorescence excitation and emission spectroscopy of mass-selected trapped molecular ions, Phys. Chem. Chem. Phys., 2010, 12, 2590–2598.

    Article  CAS  Google Scholar 

  19. J.-F. Greisch, M. E. Harding, M. Kordel, W. Klopper, M. M. Kappes and D. Schooss, Intrinsic fluorescence properties of rhodamine cations in gas-phase: triplet lifetimes and dispersed fluorescence spectra, Phys. Chem. Chem. Phys., 2013, 15, 8162–8170.

    Article  CAS  Google Scholar 

  20. S. M. Wellman and R. A. Jockusch, Moving in on the action: an experimental comparison of fluorescence excitation and photodissociation action spectroscopy, J. Phys. Chem. A, 2015, 119, 6333–6338.

    Article  CAS  Google Scholar 

  21. A. M. Nagy, F. O. Talbot, M. F. Czar and R. A. Jockusch, Fluorescence lifetimes of rhodamine dyes in vacuo, J. Photochem. Photobiol, A, 2012, 244, 47–53.

    Article  CAS  Google Scholar 

  22. K. Chingin, R. M. Balabin, V. Frankevich, H. Chen, K. Barylyuk, R. Nieckarz, A. Fedorov and R. Zenobi, Optical properties of protonated Rhodamine 19 isomers in solution and in the gas phase, Phys. Chem. Chem. Phys., 2010, 12, 14121–14127.

    Article  CAS  Google Scholar 

  23. J.-F. Greisch, M. E. Harding, W. Klopper, M. M. Kappes and D. Schooss, Effect of proton substitution by alkali ions on the fluorescence emission of Rhodamine B. cations in the gas phase, J. Phys. Chem. A, 2014, 118, 3787–3794.

    Article  CAS  Google Scholar 

  24. R. P. Sabatini, M. F. Mark, D. J. Mark, M. W. Kryman, J. E. Hill, W. W. Brennessel, M. R. Detty, R. Eisenberg and D. W. McCamant, A comparative study of the photophysics of phenyl, thienyl, and chalcogen substituted rhodamine dyes, Photochem. Photobiol. Sci., 2016, 15, 1417–1432.

    Article  CAS  Google Scholar 

  25. M. H. Stockett, J. Houmoller, K. Støchkel, A. Svendsen and S. Brøndsted Nielsen, A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy, Rev. Sci. Instrum., 2016, 87, 053103.

    Article  Google Scholar 

  26. K. R. Mulhern, A. Orchard, D. F. Watson and M. R. Detty, Influence of surface-attachment functionality on the aggregation, persistence, and electron-transfer reactivity of chalcogenorhodamine dyes on TiO2, Langmuir, 2012, 28, 7071–7082.

    Article  CAS  Google Scholar 

  27. T. Y. Ohulchanskyy, D. J. Donnelly, M. R. Detty and P. N. Prasad, Heteroatom substitution induced changes in excited-state photophysics and singlet oxygen generation in chalcogenoxanthylium dyes: Effect of sulfur and selenium substitutions, J. Phys. Chem. B, 2004, 108, 8668–8672.

    Article  CAS  Google Scholar 

  28. S. J. Wagner, A. Skripchenko, D. J. Donnelly, K. Ramaswamy and M. R. Detty, Chalcogenoxanthylium photosensitizers for the photodynamic purging of blood-borne viral and bacterial pathogens, Bioorg. Med. Chem., 2005, 13, 5927–5935.

    Article  CAS  Google Scholar 

  29. B. Calitree, D. J. Donnelly, J. J. Holt, M. K. Gannon, C. L. Nygren, D. K. Sukumaran, J. Autschbach and M. R. Detty, Tellurium analogues of rosamine and rhodamine dyes: synthesis, structure, 125Te NMR, and heteroatom contributions to excitation energies, Organometallics, 2007, 26, 6248–6257.

    Article  CAS  Google Scholar 

  30. M. W. Kryman, G. A. Schamerhorn, J. E. Hill, B. D. Calitree, K. S. Davies, M. K. Linder, T. Y. Ohulchanskyy and M. R. Detty, Synthesis and properties of heavy chalcogen analogues of the Texas reds and related rhodamines, Organometallics, 2014, 33, 2628–2640.

    Article  CAS  Google Scholar 

  31. J. R. Lakowitz, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Publishers, 1999.

    Book  Google Scholar 

  32. V. Barone, J. Bloino, S. Monti, A. Pedone and G. Prampolini, Fluorescence spectra of organic dyes in solution: a time dependent multilevel approach, Phys. Chem. Chem. Phys., 2011, 13, 2160–2166.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steen Brøndsted Nielsen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stockett, M.H., Kjær, C., Linder, M.K. et al. Luminescence spectroscopy of chalcogen substituted rhodamine cations in vacuo. Photochem Photobiol Sci 16, 779–784 (2017). https://doi.org/10.1039/c7pp00049a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00049a

Navigation