Skip to main content
Log in

The first transition metal phthalocyanines: sensitizing rubrene emission based on triplet–triplet annihilation

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Metallophthalocyanines (MPc-o-Cou, M = Fe, Co, Ni, and Cu) with fourth period metal ions have been successfully applied as a sensitizer coupled with rubrene (Rub) in photon upconversion based on triplet–triplet annihilation. An upconversion quantum yield (ϕPUC) of up to 4.82% was observed in the CoPc-o-Cou: Rub couple. The absorption and phosphorescence emission spectra showed that the Q bands and phosphorescence emission peaks were dramatically dependent on the number of d-electrons of the metal ions in MPc-o-Cou. These results suggested that the photon upconversion behavior of MPc-o-Cou: Rub systems could be managed by altering the metal ions in MPc-o-Cou.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Y. Cheng, A. Nattestad, T. F. Schulze, R. W. MacQueen, B. Fuckel, K. Lips, G. G. Wallace, T. Khoury, M. J. Crossley, and T. W. Schmidt, Increased upconversion performance for thin film solar cells: a trimolecular composition, Chem. Sci., 2016, 7, 559–568.

    Article  CAS  PubMed  Google Scholar 

  2. A. Nattestad, Y. Y. Cheng, R. W. MacQueen, T. F. Schulze, F. W. Thompson, A. J. Mozer, B. Fückel, T. Khoury, M. J. Crossley, K. Lips, G. G. Wallace, and T. W. Schmidt, Dye-Sensitized Solar Cell with Integrated Triplet–Triplet Annihilation Upconversion System, J. Phys. Chem. Lett., 2013, 4, 2073–2078.

    Article  CAS  PubMed  Google Scholar 

  3. V. Gray, D. Dzebo, M. Abrahamsson, B. Albinsson, and K. Moth-Poulsen, Triplet-triplet annihilation photon-upconversion: towards solar energy applications, Phys. Chem. Chem. Phys., 2014, 16, 10345–10352.

    Article  CAS  PubMed  Google Scholar 

  4. C. Wohnhaas, V. Mailänder, M. Dröge, M. A. Filatov, D. Busko, Y. Avlasevich, S. Baluschev, T. Miteva, K. Landfester, and A. Turshatov, Triplet–Triplet Annihilation Upconversion Based Nanocapsules for Bioimaging Under Excitation by Red and Deep-Red Light, Macromol. Biosci., 2013, 13, 1422–1430.

    Article  CAS  PubMed  Google Scholar 

  5. A. Nagai, J. B. Miller, P. Kos, S. Elkassih, H. Xiong, and D. J. Siegwart, Tumor Imaging Based on Photon Upconversion of Pt(ii) Porphyrin Rhodamine Co-modified NIR Excitable Cellulose Enhanced by Aggregation, ACS Biomater. Sci. Eng., 2015, 1, 1206–1210.

    Article  CAS  PubMed  Google Scholar 

  6. W. Wang, Q. Liu, C. Zhan, A. Barhoumi, T. Yang, R. G. Wylie, P. A. Armstrong, and D. S. Kohane, Efficient Triplet–Triplet Annihilation-Based Upconversion for Nanoparticle Phototargeting, Nano Lett., 2015, 15, 6332–6338.

    Article  CAS  PubMed  Google Scholar 

  7. O. S. Kwon, J.-H. Kim, J. K. Cho, and J.-H. Kim, Triplet–Triplet Annihilation Upconversion in CdS-Decorated SiO2 Nanocapsules for Sub-Bandgap Photocatalysis, ACS Appl. Mater. Interfaces., 2015, 7, 318–325.

    Article  CAS  PubMed  Google Scholar 

  8. H. Yonemura, Y. Naka, R. Matsumoto, and S. Yamada, Effects of Silver and Gold Nanoparticles on Photon Upconversion Based on Sensitized Triplet-Triplet Annihilation, Trans. Mater. Res. Soc. Jpn., 2015, 40, 195–201.

    Article  CAS  Google Scholar 

  9. P. E. Keivanidis, S. Baluschev, T. Miteva, G. Nelles, U. Scherf, A. Yasuda, and G. Wegner, Up-Conversion Photoluminescence in Polyfluorene Doped with Metal(II)–Octaethyl Porphyrins, Adv. Mater., 2003, 15, 2095–2098.

    Article  CAS  Google Scholar 

  10. T. N. Singh-Rachford, A. Nayak, M. L. Muro-Small, S. Goeb, M. J. Therien, and F. N. Castellano, Supermolecular-Chromophore-Sensitized Near-Infrared-to-Visible Photon Upconversion, J. Am. Chem. Soc., 2010, 132, 14203–14211.

    Article  CAS  PubMed  Google Scholar 

  11. S. Ji, H. Guo, W. Wu, W. Wu, and J. Zhao, Ruthenium(ii) Polyimine–Coumarin Dyad with Non-emissive 3IL Excited State as Sensitizer for Triplet–Triplet Annihilation Based Upconversion, Angew. Chem., Int. Ed., 2011, 50, 8283–8286.

    Article  CAS  Google Scholar 

  12. W. Wu, H. Guo, W. Wu, S. Ji, and J. Zhao, Long-Lived Room Temperature Deep-Red/Near-IR Emissive Intraligand Triplet Excited State (3IL) of Naphthalimide in Cyclometalated Platinum(ii) Complexes and Its Application in Upconversion, Inorg. Chem., 2011, 50, 11446–11460.

    Article  CAS  PubMed  Google Scholar 

  13. S. Ji, W. Wu, J. Zhao, H. Guo, and W. Wu, Efficient Triplet–Triplet Annihilation Upconversion with Platinum(ii) Bis(arylacetylide) Complexes That Show Long-Lived Triplet Excited States, Eur. J. Inorg. Chem., 2012, 2012, 3183–3190.

    Article  CAS  Google Scholar 

  14. W. Wu, J. Zhao, W. Wu, and Y. Chen, Room temperature long-lived triplet excited state of fluorescein in N N Pt(ii) bisacetylide complex and its applications for triplet–triplet annihilation based upconversions, J. Organomet. Chem., 2012, 713, 189–196.

    Article  CAS  Google Scholar 

  15. Q. Li, H. Guo, L. Ma, W. Wu, Y. Liu, and J. Zhao, Tuning the photophysical properties of N NPt(ii) bisacetylide complexes with fluorene moiety and its applications for triplet-triplet-annihilation based upconversion, J. Mater. Chem., 2012, 22, 5319–5329.

    Article  CAS  Google Scholar 

  16. R. S. Khnayzer, J. Blumhoff, J. A. Harrington, A. Haefele, F. Deng, and F. N. Castellano, Upconversion-powered photoelectrochemistry, Chem. Commun., 2012, 48, 209–211.

    Article  CAS  Google Scholar 

  17. X. Cao, B. Hu, and P. Zhang, High Upconversion Efficiency from Hetero Triplet–Triplet Annihilation in Multiacceptor Systems, J. Phys. Chem. Lett., 2013, 4, 2334–2338.

    Article  CAS  Google Scholar 

  18. T. N. Singh-Rachford, and F. N. Castellano, Triplet Sensitized Red-to-Blue Photon Upconversion, J. Phys. Chem. Lett., 2010, 1, 195–200.

    Article  CAS  Google Scholar 

  19. Y. Murakami, Photochemical photon upconverters with ionic liquids, Chem. Phys. Lett., 2011, 516, 56–61.

    Article  CAS  Google Scholar 

  20. S. M. Borisov, G. Zenkl, and I. Klimant, Phosphorescent Platinum(ii) and Palladium(ii) Complexes with Azatetrabenzoporphyrins—New Red Laser Diode-Compatible Indicators for Optical Oxygen Sensing, ACS Appl. Mater. Interfaces., 2010, 2, 366–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J. L. Han, J. You, H. Yonemura, S. Yamada, S. R. Wang, and X. G. Li, Metallophthalocyanines as triplet sensitizers for highly efficient photon upconversion based on sensitized triplet-triplet annihilation, Photochem. Photobiol. Sci., 2016, 15, 1039–1045.

    Article  CAS  PubMed  Google Scholar 

  22. T. N. Singh-Rachford, and F. N. Castellano, Low Power Visible-to-UV Upconversion, J. Phys. Chem. A., 2009, 113, 5912–5917.

    Article  CAS  PubMed  Google Scholar 

  23. W. Wu, H. Guo, W. Wu, S. Ji, and J. Zhao, Organic Triplet Sensitizer Library Derived from a Single Chromophore (BODIPY) with Long-Lived Triplet Excited State for Triplet–Triplet Annihilation Based Upconversion, J. Org. Chem., 2011, 76, 7056–7064.

    Article  CAS  PubMed  Google Scholar 

  24. J. Peng, X. Guo, X. Jiang, D. Zhao, and Y. Ma, Developing efficient heavy-atom-free photosensitizers applicable to TTA upconversion in polymer films, Chem. Sci., 2016, 7, 1233–1237.

    Article  CAS  PubMed  Google Scholar 

  25. N. Yanai, M. Kozue, S. Amemori, R. Kabe, C. Adachi, and N. Kimizuka, Increased Vis-to-UV upconversion performance by energy level matching between a TADF donor and high triplet energy acceptors, J. Mater. Chem. C., 2016, 4, 6447–6451.

    Article  CAS  Google Scholar 

  26. Y. Y. Cheng, T. Khoury, R. G. C. R. Clady, M. J. Y. Tayebjee, N. J. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, On the efficiency limit of triplet-triplet annihilation for photochemical upconversion, Phys. Chem. Chem. Phys., 2010, 12, 66–71.

    Article  CAS  PubMed  Google Scholar 

  27. N. Kobayashi, and H. Konami, in Phthalocyanines-properties and applications, ed. C. C. Leznoff and A. B. P. Lever, VCH, New York, 1996, vol. IV, pp. 343–404.

    Google Scholar 

  28. K. Akiyama, S. Tero-Kubota, and Y. Ikegami, Time-resolved EPR observation of the short-lived excited triplet states of diamagnetic metallophthalocyanines in a rigid glassy matrix, Chem. Phys. Lett., 1991, 185, 65–67.

    Article  CAS  Google Scholar 

  29. Y. Rio, M. Salome Rodriguez-Morgade, and T. Torres, Modulating the electronic properties of porphyrinoids: a voyage from the violet to the infrared regions of the electromagnetic spectrum, Org. Biomol. Chem., 2008, 6, 1877–1894.

    Article  CAS  PubMed  Google Scholar 

  30. D. R. Tackley, G. Dent, and W. Ewen Smith, Phthalocyanines: structure and vibrations, Phys. Chem. Chem. Phys., 2001, 3, 1419–1426.

    Article  CAS  Google Scholar 

  31. F. Deng, J. R. Sommer, M. Myahkostupov, K. S. Schanze, and F. N. Castellano, Near-IR phosphorescent metalloporphyrin as a photochemical upconversion sensitizer, Chem. Commun., 2013, 49, 7406–7408.

    Article  CAS  Google Scholar 

  32. S. Baluschev, V. Yakutkin, G. Wegner, T. Miteva, G. Nelles, A. Yasuda, S. Chernov, S. Aleshchenkov, A. Cheprakov, and Upconversion with ultrabroad excitation band: Simultaneous use of two sensitizers, Appl. Phys. Lett., 2007, 90, 181103.

    Article  CAS  Google Scholar 

  33. T. N. Singh-Rachford, and F. N. Castellano, Pd(ii) Phthalocyanine-Sensitized Triplet−Triplet Annihilation from Rubrene, J. Phys. Chem. A., 2008, 112, 3550–3556.

    Article  CAS  PubMed  Google Scholar 

  34. R. R. Millard, and B. I. Greene, Direct determination of nonradiative relaxation rates in nonfluorescent metallophthalocyanines, J. Phys. Chem., 1985, 89, 2976–2978.

    Article  CAS  Google Scholar 

  35. A. V. Nikolaitchik, and M. A. J. Rodgers, Crown Ether Substituted Monomeric and Cofacial Dimeric Metallophthalocyanines. 2. Photophysical Studies of the Cobalt(ii) and Nickel(ii) Variants, J. Phys. Chem. A., 1999, 103, 7597–7605.

    Article  CAS  Google Scholar 

  36. A. V. Nikolaitchik, O. Korth, and M. A. J. Rodgers, Crown Ether Substituted Monomeric and Cofacial Dimeric Metallophthalocyanines. 1. Photophysical Studies of the Free Base, Zinc(ii), and Copper(ii) Variants, J. Phys. Chem. A., 1999, 103, 7587–7596.

    Article  CAS  Google Scholar 

  37. A. Monguzzi, R. Tubino, S. Hoseinkhani, M. Campione, and F. Meinardi, Low power, non-coherent sensitized photon up-conversion: modelling and perspectives, Phys. Chem. Chem. Phys., 2012, 14, 4322–4332.

    Article  CAS  PubMed  Google Scholar 

  38. P. Duan, N. Yanai, H. Nagatomi, and N. Kimizuka, Photon Upconversion in Supramolecular Gel Matrixes: Spontaneous Accumulation of Light-Harvesting Donor–Acceptor Arrays in Nanofibers and Acquired Air Stability, J. Am. Chem. Soc., 2015, 137, 1887–1894.

    Article  CAS  PubMed  Google Scholar 

  39. R. Sens, and K. H. Drexhage, Fluorescence quantum yield of oxazine and carbazine laser dyes, J. Lumin., 1981, 24, 709–712.

    Article  Google Scholar 

  40. W. Wu, D. Huang, X. Yi, and J. Zhao, Tridentate cyclometalated platinum(ii) complexes with strong absorption of visible light and long-lived triplet excited states as photosensitizers for triplet–triplet annihilation upconversion, Dyes Pigm., 2013, 96, 220–231.

    Article  CAS  Google Scholar 

  41. T. C. K. Tokumaru, Yuki Hikari Kagaku Hannoron (Organic Photochemical Reaction), Tokyo Kagaku Dojin, 1973, p. 68.

    Google Scholar 

  42. F. Bayrakçeken, A new type of delayed fluorescence of rubrene in solution, J. Lumin., 1992, 54, 29–33.

    Article  Google Scholar 

  43. S. Moribe, H. Yonemura, Y. Wakita, T. Yamashita, and S. Yamada, Reverse phenomena of magnetic field effects and time-resolved EPR spectra in the photogenerated biradical from intramolecular electron-transfer in a phenothiazine–C60 linked compound with a semi-rigid spacer, Mol. Phys., 2010, 108, 1929–1940.

    Article  CAS  Google Scholar 

  44. C. C. Byeon, M. M. McKerns, W. Sun, T. M. Nordlund, C. M. Lawson, and G. M. Gray, Excited state lifetime and intersystem crossing rate of asymmetric pentaazadentate porphyrin-like metal complexes, Appl. Phys. Lett., 2004, 84, 5174–5176.

    Article  CAS  Google Scholar 

  45. J.-J. Guo, S.-R. Wang, X.-G. Li, and M.-Y. Yuan, The synthesis, photophysical and thermal properties of novel 7-hydroxy-4-methylcoumarin tetrasubstituted metallophthalocyanines with axial chloride ligand, Dyes Pigm., 2012, 93, 1463–1470.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National High-tech R&D Program (863 Program) (No. 2015AA033402 for XL), the Tianjin science and technology plan projects (147XGCCX1007 for XL) and the Key Projects in Natural Science Foundation of Tianjin (JCZDJC37100 for SW), as well as Grants-in-Aid for Scientific Research (No. 25600006 for HY) and the Joint Usage/Research Program on Zero-Emission Energy Research, Institute of Advanced Energy, Kyoto University (ZE26A-27 and ZE27A-2 for HY).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing You or Yonemura Hiroaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Zhang, F., You, J. et al. The first transition metal phthalocyanines: sensitizing rubrene emission based on triplet–triplet annihilation. Photochem Photobiol Sci 16, 1384–1390 (2017). https://doi.org/10.1039/c6pp00464d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00464d

Navigation