Skip to main content
Log in

Self-initiation of UV photopolymerization reactions using tetrahalogenated bisphenol A (meth)acrylates

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The potential of tetrachlorinated and tetrabrominated bisphenol A diacrylates and dimethacrylates for self-initiation of a radical photopolymerization was investigated. The kinetics of the photopolymerization of an acrylic model varnish containing halogenated monomers was studied by real-time FTIR spectroscopy, whereas the formation of reactive species and secondary products was elucidated by laser flash photolysis and product analysis by GC-MS after steady-state photolysis. The interpretation of the experimental data and the analysis of possible reaction pathways were assisted by quantum chemical calculations. It was shown that all halogenated monomers lead to a significant acceleration of the photopolymerization kinetics at a minimum concentration of 5 wt%. Steady-state and laser flash photolysis measurements as well as quantum chemical calculations showed that brominated and chlorinated samples do not follow the same pathway to generate radical species. Whereas chlorinated (meth)acrylates may cleave only at the C-O bonds of the carboxyl groups resulting in acrolein and oxyl radicals for initiation, brominated monomers may cleave either at the C-O bonds or at the C-Br bonds delivering aryl and bromine radicals. The quantum yields for the photolysis of the halogenated monomers were found to be in the order of 0.1 for acrylates and 0.2 for methacrylates (with an estimated error of 25%), independently of the attached Brand CI halogens. Finally, the trihalogenated bisphenol A di(meth)acrylate radicals and the acrolein radicals were found to show the highest efficiencies for the reaction with another acrylic double bond leading to the formation of a polymer network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. J.-P. Fouassier, Photoinitiation, Photopolymerization and Photocuring, Fundamentals and Applications, Carl Hanser Verlag, Munich, 1995.

    Google Scholar 

  2. J. P. Fouassier and F. J. Rabek, Radiation Curing in Polymer Science and Technology: Fundamentals and Methods, Springer Science & Business Media, New York, 1993.

    Book  Google Scholar 

  3. C. Decker, Recent developments in photoinitiated radical polymerization, Macromol. Symp., 1999, 143, 45–63.

    Article  CAS  Google Scholar 

  4. J. V. Crivello and K. Dietliker, Chemistry & Technology of UV & EB. Formulation for Coatings, Inks & Paints, John Wiley & Sons, New York, 2nd edn, 1998.

    Google Scholar 

  5. R. Schwalm, UV. Coatings: Basics, Recent Developments and New Applications, Elsevier, Amsterdam, 2007.

    Google Scholar 

  6. W. Knolle, S. Naumov, M. Madani and C. von Sonntag, Photochemistry of acrylates at 222 nm, Nucl. Instrum. Methods Phys. Res., Sect. B, 2005, 236, 195–200.

    Article  CAS  Google Scholar 

  7. C. N. Sanrame, Y. You, M. Talley, M. G. Ivan and J. C. Scaiano, Direct photobleaching of acrylates in polymethylsilsesquioxane films by 193 nm irradiation, Polymer, 2008, 49, 412–421.

    Article  CAS  Google Scholar 

  8. L. Prager, L. Wennrich, W. Knolle, S. Naumov and A. Prager, Absorption of acrylates and polysilazanes in the far UVC. and the VUV. regions, Mater. Chem. Phys., 2012, 134, 235–242.

    Article  CAS  Google Scholar 

  9. T. Scherzer, Photopolymerization of acrylates without photoinitiators with short-wavelength UV radiation: A study with real-time Fourier transform infrared spectroscopy, J. Polym. Sci., Part A: Polym. Chem., 2004, 42, 894–901.

    Article  CAS  Google Scholar 

  10. T. Scherzer, W. Knolle, S. Naumov and R. Mehnert, Direct initiation of the photopolymerisation of acrylates by short-wavelength excimer UV. radiation, Nucl. Instrum. Methods Phys. Res., Sect. B, 2003, 208, 271–276.

    Article  CAS  Google Scholar 

  11. T. Scherzer, W. Knolle, S. Naumov and L. Prager, Investigations on the photoinitiator-free photo-polymerization of acrylates by vibrational spectroscopic methods, Macromol. Symp., 2005, 230, 173–182.

    Article  CAS  Google Scholar 

  12. P. A. Hoijemberg, A. Chemtob and C. Croutxe-Barghorn, Two Routes Towards Photoinitiator-Free Photopolymerization in Miniemulsion: Acrylate Self-Initiation and Photoactive Surfactant, Macromol. Chem. Phys., 2011, 212, 2417–2422.

    Article  CAS  Google Scholar 

  13. F. Jasinski, E. Lobry, A. Chemtob, C. Croutxe-Barghorn and A. Criqui, Photopolymerizable Monomer Miniemulsions: Why Does Droplet Size Matter?, Macromol. Chem. Phys., 2013, 214, 1669–1676.

    Article  CAS  Google Scholar 

  14. J.-P. Fouassier and J. Lalevee, Photoinitiators for Polymer Synthesis: Scope, Reactivity and Efficiency, Wiley-VCH, Verlag, Weinheim, 2012.

  15. B. L. Funt and S.- R. Tan, The photoelectrochemical initiation of polymerization of styrene, J. Polym. Sci., Polym. Chem. Ed., 1984, 22, 605–608.

    Article  CAS  Google Scholar 

  16. B. Kraeutler, H. Reiche, A. J. Bard and R. G. Hocker, Initiation of free radical polymerization by heterogeneous photocatalysis at semiconductor powders, J. Polym. Sci., Polym. Lett. Ed., 1979, 17, 535–538.

    Article  CAS  Google Scholar 

  17. X. X. Wang, H. T. Wang, X. M. Song, G. Q. Wang, Q. G. Du and Q. T. Chen, Photocatalytic polymerization induced by a transparent anatase titania aqueous sol and fabrication of polymer composites, eXPRESS. Polym. Lett, 2010, 4, 373–381.

    Article  CAS  Google Scholar 

  18. A. J. Hoffman, H. Yee, G. Mills and M. R. Hoffmann, Photoinitiated polymerization of methyl methacrylate using Q-sized zinc oxide colloids, J. Phys. Chem., 1992, 96, 5540–5546.

    Article  CAS  Google Scholar 

  19. Z. Y. Huang, T. Barber, G. Mills and M. B. Morris, Heterogeneous Photopolymerization of Methyl Methacrylate Initiated by Small ZnO. Particles, J. Phys. Chem., 1994, 98, 12746–12752.

    Article  CAS  Google Scholar 

  20. J. C. Kuriacose and M. C. Markham, Mechanism of the photo-initiated polymerization of methyl methacrylate at zinc oxide surfaces, J. Phys. Chem., 1961, 65, 2232–2236.

    Article  CAS  Google Scholar 

  21. M. Yamamoto and G. Oster, Zinc oxide-sensitized photopolymerization, J. Polym. Sci., Part A: Polym. Chem., 1966, 4, 1683–1688.

    Article  CAS  Google Scholar 

  22. M. Alves da Silva, H. D. Burrows, S. J. Formosinho, M. H. Gil, A. R. Lourenco, F. J. A. Paula and A. P. Piedade, Photopolymerization of acrylamide onto magnetite particles: preparation of magnetic supports for enzyme immobilization, Mater. Lett, 1991, 11, 96–100.

    Article  CAS  Google Scholar 

  23. M. Sangermano, L. Vescovo, N. Pepino, A. Chiolerio, P. Allia, P. Tiberto, M. Coisson, L. Suber and G. Marchegiani, Photoinitiator-Free UV-Cured Acrylic Coatings Containing Magnetite Nanoparticles, Macromol. Chem. Phys., 2010, 211, 2530–2535.

    Article  CAS  Google Scholar 

  24. C. Dworak, S. Kopeinig, H. Hoffmann and R. Liska, Photoinitiating monomers based on di- and triacryloylated hydroxylamine derivatives, J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 392–403.

    Article  CAS  Google Scholar 

  25. T. Scherzer, W. Knolle, S. Naumov, C. Eisner and M. R. Buchmeiser, Self-initiation of the UV. photopolymerization of brominated acrylates, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 4905–4916.

    Article  CAS  Google Scholar 

  26. T. Scherzer, O. Savchuk, S. Naumov, W. Knolle and K. Heymann, Self-Initiation of Photopolymerization Reactions Using Halogenated (Meth)Acrylates, RadTech Rep., 2012, 4, 18–26.

    Google Scholar 

  27. O. Daikos, S. Naumov, W. Knolle, K. Heymann and T. Scherzer, Peculiarities of the photoinitiator-free photopolymerization of pentabrominated and pentafluorinated aromatic acrylates and methacrylates, Phys. Chem. Chem. Phys., 2016, 18, 32369–32377.

    Article  CAS  PubMed  Google Scholar 

  28. N. B. Colthup, L. H. Daly and S. E. Wiberley, Introduction of Infrared and Raman Spectroscopy, Academic Press, San Diego, 3rd edn, 1990.

    Google Scholar 

  29. D. Lin-Vien, N. B. Colthup, W. G. Fateley and J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, San Diego, 1991.

    Google Scholar 

  30. T. Scherzer and U. Decker, Real-time FTIR-ATR. spectroscopy to study the kinetics of ultrafast photopolymerization reactions induced by monochromatic UV. light, Vib. Spectrosc, 1999, 19, 385–398.

    Article  CAS  Google Scholar 

  31. E. S. Jonsson, T. Y. Lee, K. Viswanathan, C. E. Hoyle, T. M. Roper, C. A. Guymon, C. Nason and I. V. Khudyakov, Photoinduced free radical polymerization using self-initiating monomers, Prog. Org. Coat, 2005, 52, 63–72.

    Article  CAS  Google Scholar 

  32. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648–5652.

    Article  CAS  Google Scholar 

  33. C. Lee, W. Yang and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B: Condens. Matter, 1988, 37, 785–789.

    Article  CAS  Google Scholar 

  34. A. D. Bochevarov, E. Harder, T. F. Hughes, J. R. Greenwood, D. A. Braden, D. M. Philipp, D. Rinaldo, M. D. Halls, J. Zhang and R. A. Friesner, Jaguar: A. high-performance quantum chemistry software program with strengths in life and materials sciences, Int. J. Quantum Chem., 2013, 113, 2110–2142.

    Article  CAS  Google Scholar 

  35. W. R. Wadt and P. J. Hay, Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi, J. Chem. Phys., 1985, 82, 284–298.

    Article  CAS  Google Scholar 

  36. R. Bauernschmitt and R. Ahlrichs, Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory, Chem. Phys. Lett, 1996, 256, 454–464.

    Article  CAS  Google Scholar 

  37. E. Emerson, W. Geun Kim and W. Bae, RadTech International UV & EB. Technology Expo & Conference (RADTECH 2014), Rosemont, Illinois, USA, 2014.

    Google Scholar 

  38. R. Mertens and C. von Sonntag, Determination of the Kinetics of Vinyl Radical Reactions by the Characteristic Visible Absorption-Spectra of Vinylperoxyl Radicals, Angew. Chem., Int. Ed. Engl., 1994, 33, 1262–1264.

    Article  Google Scholar 

  39. Z. B. Alfassi, G. I. Khaikin and P. Neta, Arylperoxyl Radicals. Formation, Absorption Spectra, and Reactivity in Aqueous Alcohol Solutions, J. Chem. Phys., 1995, 99, 265–268.

    Article  CAS  Google Scholar 

  40. X. Fang, R. Mertens and C. von Sonntag, Pulse radiolysis of aryl bromides in aqueous solutions: some properties of aryl and arylperoxyl radicals, J. Chem. Soc, Perkin Trans. 2, 1995, 1033–1036.

    Article  Google Scholar 

  41. S. Naumov and C. von Sonntag, UV-visible absorption spectra of alkyl-, vinyl-, aryl- and thiylperoxyl radicals and some related radicals in aqueous solution: a quantum-chemical study, J. Phys. Org. Chem., 2005, 18, 586–594.

    Article  CAS  Google Scholar 

  42. Z. B. Alfassi, S. Marguet and P. Neta, Formation and Reactivity of Phenylperoxyl Radicals in Aqueous Solutions, J. Phys. Chem., 1994, 98, 8019–8023.

    Article  CAS  Google Scholar 

  43. S. C. Ligon, B. Husar, H. Wutzel, R. Holman and R. Liska, Strategies to Reduce Oxygen Inhibition in Photoinduced Polymerization, Chem. Rev., 2014, 114, 557–589.

    Article  CAS  PubMed  Google Scholar 

  44. R. Mehnert, A. Pincus, I. Janorsky, R. Stowe and A. Berejka, Chemistry & Technology for UV & EB. Formulation for Coatings, Inks & Paints, John Wiley & Sons, New York, 1998.

    Google Scholar 

  45. G. L. Hug, Optical spectra of nonmetallic inorganic transient species in aqueous solution, U.S. Government printing office, Washington, D.C., 1981.

    Book  Google Scholar 

  46. G. G. Jayson, B. J. Parsons and A. J. Swallow, Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution. Their formation using pulses of radiation and their role in the mechanism of the Fricke dosimeter, J. Chem. Soc, Faraday Trans. 1, 1973, 69, 1597–1607.

    Article  CAS  Google Scholar 

  47. V. Nagarajan and R. W. Fessenden, Flash photolysis of transient radicals. 1. X2- with X=CI, Br, I, and SCN, J. Phys. Chem., 1985, 89, 2330–2335.

    Article  CAS  Google Scholar 

  48. J. C. Scaiano, M. Barra, M. Krzywinski, R. Sinta and G. Calabrese, Laser flash photolysis determination of absolute rate constants for reactions of bromine atoms in solution., J. Am. Chem. Soc, 1993, 115, 8340–8344.

    Article  CAS  Google Scholar 

  49. D. Weldon, M. Barra, R. Sinta and J. C. Scaiano, Dynamics of the Photochemical Debromination of Silicon-Substituted Vicinal Dibromides, J. Org. Chem., 1995, 60, 3921–3923.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Théophile Pelras.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/C6pp00444j

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelras, T., Knolle, W., Naumov, S. et al. Self-initiation of UV photopolymerization reactions using tetrahalogenated bisphenol A (meth)acrylates. Photochem Photobiol Sci 16, 649–662 (2017). https://doi.org/10.1039/c6pp00444j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00444j

Navigation