Skip to main content
Log in

Phototransformation of 5-nitro-2-furaldehyde in aqueous solution. A laser flash photolysis and product analysis study

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Laser flash photolysis of 5-nitro-2-furaldehyde (NFA) in solution shows a short-lived transient absorption with λmax = 475 ± 5 nm, which is relatively insensitive to solvent polarity and is assigned to the lowest triplet state of NFA (3NFA*). In water, the 3NFA* absorption decays to a long-lived absorption, the study of which, at different times after the end of the laser pulse, reveals it to be due to a furyloxyl radical λ max ≈ 375 nm) and to the radical anion NFA’ λmax ≈ 400 nm). These radicals were produced independently to confirm the assignment. The lifetime of 3NFA* depends both on the solvent and the ground-state concentration of NFA. An (n, π*) nature is attributed to 3NFA* on the basis of the propensity of 3NFA* to abstract a hydrogen-atom from the solvent. Kinetic evidence for triplet excimer formation was obtained from the self-quenching of 3NFA* in solvents where the triplet decay is slower. The effect of acidity on the triplet lifetime is discussed with respect to an electron-transfer self-quenching mechanism, assisted by the triplet excimer which is proposed to dissociate into radical ions. Chromatographic and spectroscopic analysis of the photolysed aqueous solution of NFA. enabled the identification of 5-hydroxymethyl-ene-2(5H)-furanone, nitrite ion and an unknown substance as the major photoproducts. Conclusive evidence is presented that the observed 5-hydroxymethylene-2(5H)-furanone is formed from the furyloxyl radical. It is shown that the unknown substance can also be obtained from both the photoreduction of NFA. in propan-2-ol and chemical reduction of NFA. by Fe(s) in water (along with 5-amino-2-furaldehyde) Based on 1H- and 13C-NMR (with 2-D. HMQC) and vibrational absorption spectroscopy, a tentative structure is proposed for the substance of tR 3.69 minutes obtained as a photoreduction product of NFA. in water. Inorganic anions are shown to be one-electron oxidised by 3NFA* (as indicated by the observation of both the radical anion of NFA. and the inorganic radical) with second-order rate constants being dependent on E17 of the inorganic radical. The implications of the results from complete quenching of 3NFA* by inorganic anions, and subsequent product analysis, for the phototransformation mechanism of NFA. in water are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Munoz-Davila, Role of Old Antibiotics in the Era of Antibiotic Resistance. Highlighted Nitrofurantoin for the Treatment of Lower Urinary Tract Infections, Antibiotics, 2014, 3, 39–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. J. R. Franco, P. P. Simarro, A. Diarra, J. A. Ruiz-Postigo, M. Samo and J. G. Jannin, Monitoring the use of nifurti-mox-eflornithine combination therapy (NECT) in the treatment of second stage gambiense human African trypanosomiasis, Res. Rep. Trop. Med., 2012, 3, 93–101.

    PubMed  PubMed Central  Google Scholar 

  3. M. Vass, K. Hruska and M. Franek, Nitrofuran antibiotics: a review on the application, prohibition and residual analysis, Vet. Med., 2008, 53, 469–500.

    Article  CAS  Google Scholar 

  4. P. Wardman, Some Reactions and Properties of Nitro Radical-Anions Important in Biology and Medicine, Environ. Health Perspect, 1985, 64, 309–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. C. Miller, L. K. Folkes, C. Mottley, P. Wardman and R. P. Mason, Revisiting the Interaction of the Radical Anion Metabolite of Nitrofurantoin with Glutathione, Arch. Biochem. Biophys., 2002, 397, 113–118.

    Article  CAS  PubMed  Google Scholar 

  6. B. S. Hall, C. Bott and S. R. Wilkinson, Nifurtimox Activation by Trypanosomal Type I Nitroreductases Generates Cytotoxic Nitrile Metabolites, J. Biol. Chem., 2011, 286, 13088–13095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. C. Bot, B. S. Hall, G. Alvarez, R. di Maio, M. Gonzalez, H. Ceretto and S. R. Wilkinson, Evaluating 5-Nitrofurans as Trypanocidal Agents, Antimicrob. Agents Chemother., 2013, 57, 1638–1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. P. L. Olive and D. R. McCalla, Cytotoxicity and DNA. damage to mammalian cells by nitrofurans, Chem.-Biol. Interact, 1977, 16, 223–233.

    Article  CAS  PubMed  Google Scholar 

  9. A. Kijima, Y. Ishii, S. Takusu, K. Matsushita, K. Kuroda, D. Hibi, Y. Suzuki, T. Nohmi and T. Umemura, Chemical structure-related mechanisms underlying in vivo genotoxicity induced by nitrofurantoin and its constituent moieties in gpt delta rats, Toxicology, 2015, 331, 125–135.

    Article  CAS  PubMed  Google Scholar 

  10. D. R. McCalla and A. Reuvers, Action of Nitrofuran Derivatives on the Chloroplast System of Euglena gracilis: Effect of Light, J. Protozool, 1970, 17, 129–134.

    Article  CAS  Google Scholar 

  11. N. Inotsume and M. Nakano, Reversible azomethine bond cleavage of nitrofurantoin in acidic solutions at body temperature, Int. J. Pharm., 1981, 8, 111–119.

    Article  CAS  Google Scholar 

  12. R. W. Busker and G. M. J. Beijersbergen van Henegouwen, The photolysis of 5-nitrofurfural in aqueous solutions: nucleophilic substitution of the nitro-group, Photochem. Photobiol, 1987, 45, 331–335.

    Article  CAS  Google Scholar 

  13. R. W. Busker and G. M. J. Beijersbergen van Henegouwen, Cytotoxicity and induction of repairable DNA. damage by photoactivated 5-nitrofurfural, Toxicology, 1987, 45, 103–112.

    Article  CAS  PubMed  Google Scholar 

  14. R. W. Busker, G. M. J. Beijersbergen van Henegouwen, G. J. H. Vaassen and R. F. Menke, Irreversible photobinding of nitrofurantoin and of nitrofurfural to plasma proteins in vitro, J. Photochem. Photobiol, B, 1989, 4, 207–218.

    Article  CAS  Google Scholar 

  15. R. W. Busker, G. M. J. Beijersbergen van Henegouwen, R. F. Menke and W. Vasbinder, Formation of methemo-globin by photoactivation of nitrofurantoin or of 5-nitro-furfural in rats exposed to UV-A. light, Toxicology, 1988, 51, 255–266.

    Article  CAS  PubMed  Google Scholar 

  16. B. L. Edhlund, W. A. Arnold and K. Mcneill, Aquatic photochemistry of nitrofuran antibiotics, Environ. Sci. Technol., 2006, 40, 5422–5427.

    Article  CAS  PubMed  Google Scholar 

  17. W. Kemula and J. Zawadowska, Photochemical reactions of nitrofurans. II. Quantum yield of photolysis, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1976, 24, 155–163. The phosphorescence emission spectrum of NFA. is incorrectly identified as 3 instead of 1, in Fig. 2.

    CAS  Google Scholar 

  18. R. B. Sleight and L. H. Sutcliffe, E.s.r. investigation of alkoxynitroxide free radicals from the photolysis of nitro-benzenes and of heterocyclic nitro compounds, Trans. Faraday Soc, 1971, 67, 2195–2204.

    Article  CAS  Google Scholar 

  19. C. Nese, M. N. Schuchmann, S. Steenken and C. von Sonntag, Oxidation vs. fragmentation in radiosensitization. Reactions of a-alkoxyalkyl radicals with 4-nitrobenzonitrile and oxygen. A. pulse radiolysis and product analysis study, J. Chem. Soc, Perkin Trans. 2, 1995, 1037–1044.

    Article  Google Scholar 

  20. G. K. Sharma, B. S. M. Rao and P. O’Neill, Redox dependence of the reaction of a-alkoxyalkyl radicals with a serious of oxidants, J. Phys. Chem. B, 2009, 113, 2207–2211.

    Article  CAS  PubMed  Google Scholar 

  21. P. Maruthamuthu and S. Steenken, An In situ photolysis-e. s.r. investigation of 5-bromo- and 5-nitro-2-furoic acid, J. Chem. Soc, Chem. Commun., 1985, 1019–1021.

    Google Scholar 

  22. C. L. Greenstock, I. Dunlop and P. Neta, Radiation chemical studies of the oxidation and reduction of nitrofurans. Oxidative denitration by OH. radicals, J. Phys. Chem., 1973, 77, 1187–1190.

    Article  CAS  Google Scholar 

  23. P. Neta and C.L. Greenstock, Oxidative denitration of 5-nitrouracil and 5-nitro-2-furoic acid by hydroxy radicals, J. Chem. Soc, Chem. Commun., 1973, 309–310.

    Google Scholar 

  24. T. J. Kemp and L. J. A. Martins, Triplet state of 5-nitro-2-furoic acid by laser flash photolysis. Spectrum, lifetime and reactivity, J. Chem. Soc, Faraday Trans. 1, 1981, 77, 1425–1435.

    Article  CAS  Google Scholar 

  25. B. E. Saltzman, Colorimetric Microdetermination of Nitrogen Dioxide in Atmosphere, Anal. Chem., 1954, 26, 1949–1955.

    Article  CAS  Google Scholar 

  26. F. F. Ebetino, J. J. Carroll and G. Gever, Reduction of nitrofurans. I Aminofurans, J. Med. Pharm. Chem., 1962, 5, 513–524.

    Article  CAS  Google Scholar 

  27. V. B. Luzhkov and I. V. Khudyakov, Mechanism for photore-duction of 2-[2′-(5″-nitrofuryl-2″)-vinyI]quinoIine, Russ. Chem. Bull, 1979, 28, 608–611.

    Article  Google Scholar 

  28. L. J. A. Martins and T. J. Kemp, Triplet state of 2-nitrothio-phene. A laser flash-photolysis study, J. Chem. Soc, Faraday Trans. 1, 1982, 78, 519–531.

    Article  CAS  Google Scholar 

  29. L. J. A. Martins and T. J. Kemp, The triplet state of iV-(n-butyI)-5-nitro-2-furamide by laser flash photolysis. Spectrum, lifetime, energy and electron-transfer reactions, J. Chem. Soc, Faraday Trans. 1, 1984, 80, 2509–2524.

    Article  CAS  Google Scholar 

  30. I. E. Borissevitch, N. A. Daghastanli and I. A. Degterev, Primary processes of photodecomposition of 2-(5′-nitro-2′-furanyI)ethenyI-4-N,-[4’-(N,N-diethyIamino)-1’-methyIbutyl] carbamoyl quinoline: Effect of oxygen and compound concentration, J. Photochem. Photobiol, A, 2003, 159, 2013–2017.

    Article  CAS  Google Scholar 

  31. C. L. Greenstock, G. W. Ruddock and R. Neta, Pulse radio-lysis and ESR studies of the electron-affinic properties of nitroheterocyclic radiosensitizers, Radiat. Res., 1976, 66, 472–484.

    Article  CAS  PubMed  Google Scholar 

  32. M. Montalti, A. Credi, L. Prodi and M. T. Gandolfi, Handbook of Photochemistry, CRC. Press, Boca Raton, 3rd edn, 2006, pp. 542–548.

    Book  Google Scholar 

  33. P. Wardman and E. D. Clark, Oxygen inhibition of nitroreductase: electron transfer from nitro radical anions to oxygen, Biochem. Biophys. Res. Commun., 1976, 69, 942–949.

    Article  CAS  PubMed  Google Scholar 

  34. C. Miller, L. K. Folkes, C. Mottley, P. Wardman and R. P. Mason, Revisiting the interaction of the radical anion metabolite of nitrofurantoin with glutathione, Arch. Biochem. Biophys., 2002, 397, 113–118.

    Article  CAS  PubMed  Google Scholar 

  35. V. Jagannadham and S. Steenken, One-electron reduction of nitrobenzenes by α-hydroxyalkyl radicals via addition / elimination. An example of an organic inner-sphere electron-transfer reaction, J. Am. Chem. Soc., 1984, 106, 6542–6551.

    Article  CAS  Google Scholar 

  36. G. E. Adams and R. L. Willson, Pulse radiolysis studies on the oxidation of organic radicals in aqueous solution, Trans. Faraday Soc, 1969, 65, 2981–2987.

    Article  CAS  Google Scholar 

  37. P. Wardman, Reduction potentials of one-electron couples involving free radicals in aqueous solutions, J. Phys. Chem. Ref. Data, 1989, 18, 1637–1723.

    Article  CAS  Google Scholar 

  38. J. P. Soumillion and B. de Wolf, A link between photoreduc-tion and photosubstitution of chloroaromatic compounds, J. Chem. Soc, Chem. Commun., 1981, 436–437.

    Google Scholar 

  39. L. J. Powers, Photolysis of 5-nitrofuramides in methanol, J. Pharm. Sci., 1971, 60, 1425–1426.

    Article  CAS  PubMed  Google Scholar 

  40. In this study we obtained kobs = 4.24 × 105 s−1 in methanol which compares to (4.80 ± 0.04)x 105 s−1 measured previously24 in water.

  41. T. Majima, C. Pac, A. Nakasone and H. Sakurai, Redox-photosensitized reactions. 7. Aromatic hydrocarbon-photosensitized electron-transfer reactions of furan, methylated furans, 1,1-diphenylethylene, and indene with p-dicyanobenzene, J. Am. Chem. Soc, 1981, 103, 4499–4508.

    Article  CAS  Google Scholar 

  42. In alkaline aqueous solution, NFA. readily undergoes thermal hydration to yield (5-nitro-furan-2-yl)-methanediol. which, upon deprotonation of the aldehydic carbon at higher pH, produces the anion viewed as imparting red colour to the alkaline aqueous solution of NFA (cf. A. Cisak, K. Rzeszowska-Modzelewska and E. Brezinska, Reactivity of 5-nitro-2-furaIdehyde in alkaline and acidic solutions, Acta Pol. Pharm., 2001, 58, 427–434).

    CAS  PubMed  Google Scholar 

  43. G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in Aqueous Solution, J. Phys. Chem. Ref. Data, 1988, 17, 513–886.

    Article  CAS  Google Scholar 

  44. D. H. Ellison, G. A. Salmon and F. Wilkinson, Nanosecond pulse radiolysis of methanolic and aqueous solutions of readily oxidizable solutes, Proc. R. Soc. London, Ser. A, 1972, 328, 23–36.

    Article  CAS  Google Scholar 

  45. A. Y. Platonov, A. V. Kurzin and A. N. Evdokimov, Composition of Vapor and Liquid Phases in the Potassium Hydroxide + Methanol Reaction System at 25 °C, J. Solution Chem., 2010, 39, 335–342.

    Article  CAS  Google Scholar 

  46. J. Olivard and J. P. Heotis, Synthesis of 4-oxoglutaraldehy-dic acid derivatives from nitrofurans and aminofurans, J. Org. Chem., 1968, 33, 2552–2554.

    Article  CAS  Google Scholar 

  47. C. L. Greenstock and I. Dunlop, Pulse radiolysis studies of nitrofurans. Radiation chemistry of nifuroxime, J. Phys. Chem., 1973, 77, 1834–1838.

    Article  Google Scholar 

  48. M. V. Piechowski, M.-A. Thelen, J. Hoigne and R. E. Buhler, tert-Butanol as an OH. scavenger in the pulse radiolysis of oxygenated systems, Ber. Bunsenges. Phys. Chem., 1992, 96, 1448–1454.

    Article  Google Scholar 

  49. A. J. Elliot and A. S. Simsons, Rate constants for reactions of hydroxyl radicals as a function of temperature, Radiat. Phys. Chem., 1984, 24, 229–231.

    CAS  Google Scholar 

  50. H. J. Lemmetyinen, Kinetic analysis of aromatic photo-cyanation: naphthalene, biphenyl and phenanthrene, J. Chem. Soc, Perkin Trans. 2, 1983, 1269–1274.

    Article  Google Scholar 

  51. M. Montalti, A. Credi, L. Prodi and M. T. Gandolfi, Handbook of Photochemistry, CRC. Press, Boca Raton, 3rd edn, 2006, pp. 536–540.

    Book  Google Scholar 

  52. Only minimal changes were observed in the UV-Visible absorption spectrum of NFA. on acidification of the aqueous solution up to 2.5 mol dm−3 HCIO4.

  53. L. J. A. Martins and T. J. Kemp, Effect of acidity on the reactivity of the triplet state of 2-nitrothiophen, J. Chem. Soc, Faraday Trans. 1, 1988, 84, 2027–2033.

    Article  CAS  Google Scholar 

  54. L. J. A. Martins, M. M. M. M. Fernandes, T. J. Kemp, S. J. Formosinho and J. S. Branco, Interaction of halide and pseudohalide ions with the triplet state of 1-nitronaphtha-lene, J. Chem. Soc, Faraday Trans., 1991, 87, 3617–3624.

    Article  CAS  Google Scholar 

  55. M. A. Paul and F. A. Long, H0 and Related Indicator Acidity Function, Chem. Rev., 1957, 57, 1–45.

    Article  CAS  Google Scholar 

  56. K. Sandros, Transfer of triplet state energy in fluid solutions III. Reversible energy transfer, Acta Chem. Scand., 1964, 18, 2355–2374.

    Article  Google Scholar 

  57. D. Meisel and R. Neta, One-electron redox potentials of nitro compounds and radiosensitizers. Correlation with spin densities of their radical anions, J. Am. Chem. Soc, 1975, 97, 5198–5203. With the addition of a few values from ref. 58 to the correlation, the equation becomes E (in volt vs. SHE) = 0.3102-0.0529x104aNNO2 (in Tesla).

    Article  CAS  Google Scholar 

  58. P. Neta, M. G. Simic and M. Z. Hoffman, Pulse radiolysis and electron spin resonance studies of nitroaromatic radical anions. Optical absorption spectra, kinetics, and one-electron redox potentials, J. Phys. Chem., 1976, 80, 2018–2023.

    Article  CAS  Google Scholar 

  59. J. E. Biaglow, B. Jacobson, M. Varnes and C. Koch, The oxidation of ascorbate by electron afflnic drugs and carcinogens, Photochem. Photobiol, 1978, 28, 869–876.

    Article  CAS  PubMed  Google Scholar 

  60. G. Herzberg, Molecular Spectra and Molecular Structure I. Electronic Spectra and Electronic Structure of Diatomic Molecules, Van Nostrand, New York, 2nd edn, 1950, p. 560.

    Google Scholar 

  61. J. A. Barltrop and N. J. Bunce, Organic photochemistry. Part VIII. The photochemical reduction of nitro-com-pounds, J. Chem. Soc. C, 1968, 1467–1474.

    Google Scholar 

  62. S. Breda, I. Reva and R. Fausto, Molecular structure and vibrational spectra of 2(5H)-furanone and 2(5H)-thiophe-none isolated in low temperature inert matrix, J. Mol. Struct, 2008, 887, 75–86.

    Article  CAS  Google Scholar 

  63. A. Filali-Mouhim, B. Champion, D. Jore, B. Hickel and C. Ferradini, Reduction radiolytique du nifurtimox par les radicaux Iibres CO2t—, J. Chim. Phys., 1991, 88, 937–943.

    Article  CAS  Google Scholar 

  64. B. S. Hall, C. Bot and S. R. Wilkinson, Nifurtimox Activation by Trypanosomal Type I. Nitroreductases Generates Cytotoxic Nitrile Metabolites, J. Biol. Chem., 2011, 286, 13088–13095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. C. A. Ramsden and V. Milata, 2-Aminofurans and 3-amino-furans, Adv. Heterocycl. Chem., 2006, 92, 1–54.

    Article  CAS  Google Scholar 

  66. E. T. Denisov and A. F. Shestakov, Free-radical decarboxylation of carboxylic acids as a concerted abstraction and fragmentation reaction, Kinet. Catal., 2013, 54, 22–33.

    Article  CAS  Google Scholar 

  67. L. J. A. Martins, Electron-transfer reactions of the nitrothio-phen triplet state studied by laser flash photolysis, J. Chem. Soc, Faraday Trans. 1, 1982, 78, 533–543.

    Article  CAS  Google Scholar 

  68. C. Capellos and G. Porter, Triplet state of α-nitronaphthalene, J. Chem. Soc, Faraday Trans. 2, 1974, 70, 1159–1164.

    Article  CAS  Google Scholar 

  69. M. Brigante, T. Charbouillot, D. Vione and G. Mailhot, Photochemistry of 1-nitronaphthalene: a potential source of singlet oxygen and radical species in atmospheric waters, J. Phys. Chem. A, 2010, 114, 2830–2836.

    Article  CAS  PubMed  Google Scholar 

  70. P. R. Maddigapu, C. Minero, V. Maurino, D. Vione, M. Brigante, T. Charbouillot, M. Sarakha and G. Mailhot, Photochemical and photosensitized reactions involving l-nitronaphthalene and nitrite in aqueous solution, Photochem. Photobiol. Sci., 2011, 10, 601–609.

    Article  PubMed  CAS  Google Scholar 

  71. D. A. Armstrong, R. E. Huie, W. H. Koppenol, S. V. Lymar, G. Merenyi, P. Neta, B. Ruscic, D. M. Stanbury, S. Steenken and P. Wardman, Standard electrode potentials involving radicals in aqueous solutions: inorganic radicals (IUPAC. Technical Report), Pure Appl. Chem., 2015, 87, 1139–1150.

    Article  CAS  Google Scholar 

  72. Z. B. Alfassi, R. E. Huie, S. Mosseri and P. Neta, Kinetics of one-electron oxidation by the cyanate radical, J. Phys. Chem., 1987, 91, 3888–3891.

    Article  CAS  Google Scholar 

  73. Using the Rehm-Weller free-energy relationship with the assumptions adopted in ref. 29 allows k2 to be calculated from the Gibbs free energy change of the one-electron transfer step from the anion to 3NFA*. This predicts that k2 > 1×109 dm3 mol−1 s−1 for the one-electron transfer quenching of 3NFA* by the anions examined in this study.

  74. G. L. Hug, Optical Spectra of Non-metallic Inorganic Transient Species in Aqueous Solution, (NSRDS - NBS 69), 1981.

    Google Scholar 

  75. B. H. Milosavljevic and J. A. La Verne, Pulse radiolysis of aqueous thiocyanate solution, J. Phys. Chem. A, 2005, 109, 165–168 and references therein.

    Article  CAS  PubMed  Google Scholar 

  76. H. D. Burrows, Electron transfer from halide ions to uranyl (2+) excited-state ions in aqueous solution: formation and decay of dihalide radical anions, Inorg. Chem., 1990, 29, 1549–1554.

    Article  CAS  Google Scholar 

  77. M. B. Groen and E. Havinga, Photoreactions of aromatic compounds. XXXIII. Nucleophilic photosubstitution of some heteroaromatic nitro compounds, Mol. Photochem., 1974, 6, 9–21.

    CAS  Google Scholar 

  78. E. Havinga and J. Cornelisse, Aromatic photosubstitution reactions, Pure Appl. Chem., 1976, 47, 1–10.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/C6pp00423g

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, L.J.A., Ferreira, J.M.M. Phototransformation of 5-nitro-2-furaldehyde in aqueous solution. A laser flash photolysis and product analysis study. Photochem Photobiol Sci 16, 721–735 (2017). https://doi.org/10.1039/c6pp00423g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00423g

Navigation