Skip to main content

Advertisement

Log in

The new supra molecular nano-aggregate curcumin-cucurbit[7]uril: synthesis, photophysical properties and biocompatibility evaluation

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The supramolecular nano-aggregate CUR-CB[7] (CUR = curcumin and CB[7] = cucurbit[7]uril) was efficiently prepared by mixing CUR. and CB[7] at a molar ratio of 1:1 in ethanol at room temperature. The supramolecular aggregate formation was evidenced by mainly FTIR, 1H. NMR, DOSY. and spectroscopy experiments. The supramolecular arrangement promotes the increase in the solubility and stability of CUR. without affecting the biological properties of the A549 cells. The luminescence properties of CUR. and CUR-CBI7] show anti-Kasha’s rule fluorescence, and their remarkable NIR. emission enables this material to be used as a luminescent probe and marker for in vivo tracking and structural integrity monitoring of the supramolecular complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. P. Sari, B. Mann, R. Kumar, R. R. B. Singh, R. Sharma, M. Bhardwaj and S. Athira, Preparation and Characterization of Nanoemulsion Encapsulating Curcumin, Food Hydrocolloids, 2015, 43, 540–546.

    Article  CAS  Google Scholar 

  2. K. Mehta, Antiproliferative Cell Lines Effect of Curcumin against Human Breast Tumor, Anti-Cancer Drugs, 1997, 8, 470–481.

    Article  CAS  PubMed  Google Scholar 

  3. K. I. P. Indira, Free Radical Reactions of Curcumin in Membrane Models, Free Radical Biol. Med., 1997, 23, 838–843.

    Article  Google Scholar 

  4. A. L. Cheng, C. H. Hsu, J. K. Lin, et al., Phase I. Clinical Trial of Curcumin, a Chemopreventive Agent, in Patients with High-Risk or Pre-Malignant Lesions, Anticancer Res., 2001, 21, 2895–2900.

    CAS  PubMed  Google Scholar 

  5. L. R. Barclay, M. R. Vinqvist, K. Mukai, H. Goto, Y. Hashimoto, A. Tokunaga and H. Uno, On the Antioxidant Mechanism of Curcumin: Classical Methods Are Needed to Determine Antioxidant Mechanism and Activity, Org. Lett., 2000, 2, 2841–2843.

    Article  CAS  PubMed  Google Scholar 

  6. P. R. K. Mohan, G. Sreelakshmi, C. V. Muraleedharan and R. Joseph, Water Soluble Complexes of Curcumin with Cyclodextrins: Characterization by FT-Raman Spectroscopy, Vib. Spectrosc, 2012, 62, 77–84.

    Article  CAS  Google Scholar 

  7. R. Singh, H. H. Tonnesen, S. B. Vogensen, T. Loftsson and M. Masson, Studies of Curcumin and Curcuminoids. XXXVI. The Stoichiometry and Complexation Constants of Cyclodextrin Complexes as Determined by the Phase-Solubility Method and UV-Vis Titration, J. Inclusion Phenom. Macrocyclic Chem., 2010, 66, 335–348.

    Article  CAS  Google Scholar 

  8. M. M. Yallapu, M. Jaggi and S. C. Chauhan, ??-CycIodextrin-Curcumin Self-Assembly Enhances Curcumin Delivery in Prostate Cancer Cells, Colloids Surf., B, 2010, 79, 113–125.

    Article  CAS  Google Scholar 

  9. E. I. Paramera, S. J. Konteles and V. T. Karathanos, Microencapsulation of Curcumin in Cells of Saccharomyces Cerevisiae, Food Chem., 2011, 125, 892–902.

    Article  CAS  Google Scholar 

  10. C. S. Mangolim, C. Moriwaki, A. C. Nogueira, F. Sato, M. L. Baesso, A. M. Neto and G. Matioli, Curcumin-p-Cydodextrin Inclusion Complex: Stability, Solubility, Characterisation by FT-IR, FT-Raman, X-Ray Diffraction and Photoacoustic Spectroscopy, and Food Application, Food Chem., 2014, 153, 361–370.

    Article  CAS  PubMed  Google Scholar 

  11. K. Maiti, K. Mukherjee, A. Gantait, B. P. Saha and P. K. Mukherjee, Curcumin-Phospholipid Complex: Preparation, Therapeutic Evaluation and Pharmacokinetic Study in Rats, Int. J. Pharm., 2007, 330, 155–163.

    Article  CAS  PubMed  Google Scholar 

  12. P. Anand, A. B. Kunnumakkara, R. A. Newman, B. B. Aggarwal, P. Anand, A. B. Kunnumakkara and R. A. Newman, Bioavailability of Curcumin: Problems and Promises Reviews Bioavailability of Curcumin: Problems and Promises, Mol. Pharm., 2007, 4, 807–818.

    Article  CAS  PubMed  Google Scholar 

  13. N. Saleh, M. B. Al-Handawi, L. Al-Kaabi, L. Ali, S. Salman Ashraf, T. Thiemann, B. Al-Hindawi and M. Meetani, Intermolecular Interactions between cucurbit[7]uril and Pilocarpine, Int. J. Pharm., 2014, 460, 53–62.

    Article  CAS  PubMed  Google Scholar 

  14. Y. J. Jeon, S.-Y. Kim, Y. H. Ko, S. Sakamoto, K. Yamaguchi and K. Kim, Novel Molecular Drug Carrier: Encapsulation of Oxaliplatin in cucurbit[7]uril and Its Effects on Stability and Reactivity of the Drug, Org. Biomol. Chem., 2005, 3, 2122–2125.

    Article  CAS  PubMed  Google Scholar 

  15. X.-L. Ni, J.-M. Yi, S. Song, Y.-Q. Zhang, S.-F. Xue, Q.-J. Zhu and Z. Tao, Supramolecular Interactions of Bisbenzimidazolyl Derivatives with cucurbit[7]uril, Potential Axle Molecules Bearing a Novel Fluorescent Signal Response, Tetrahedron, 2013, 69, 6219–6222.

    Article  CAS  Google Scholar 

  16. E. P. Kyba, R. C. Helgeson, K. Madan, G. W. Gokel, T. L. Tarnowski, S. S. Moore and D. J. Cram, Host-Guest Comlexation. 1. Concept and Illustration, J. Am. Chem. Soc, 1977, 99, 2564–2571.

    Article  CAS  Google Scholar 

  17. Z. Miskolczy, J. G. Harangozo, L. Biczok, V. Wintgens, C. Lorthioir and C. Amiel, Photochemical & Photobiological Sciences Effect of Torsional Isomerization and Inclusion Complex Formation with cucurbit[7]uril on the Fluorescence of 6-Methoxy-l-MethyIquinoIinium, Photochem. Photobiol. Sci., 2014, 13, 499–508.

    Article  CAS  PubMed  Google Scholar 

  18. M. Shaikh, S. D. Choudhury, J. Mohanty, A. C. Bhasikuttan and H. Pal, Contrasting Guest Binding Interaction of cucurbit [7-8]uriIs with Neutral Red Dye: Controlled Exchange of Multiple Guests, Phys. Chem. Chem. Phys., 2010, 12, 7050–7055.

    Article  CAS  PubMed  Google Scholar 

  19. N. N. Valand, M. B. Patel and S. K. Menon, Curcumin-P-suIfonatocaIix[4]resorcinarene (P-SC[4]R) Interaction: Thermo-Physico Chemistry, Stability and Biological Evaluation, RSC. Adv., 2015, 5, 8739–8752.

    Article  CAS  Google Scholar 

  20. G. Yu, K. Jie and F. Huang, Supramolecular Amphiphiles Based on Host-Guest Molecular Recognition Motifs, Chem. Rev., 2015, 115, 7240–7303.

    Article  CAS  PubMed  Google Scholar 

  21. G. Chen and M. Jiang, Cyclodextrin-Based Inclusion Complexation Bridging Supramolecular Chemistry and Macromolecular Self-Assembly, Chem. Soc. Rev., 2011, 40, 2254–2266.

    Article  CAS  PubMed  Google Scholar 

  22. X. J. Loh, Supramolecular Host-guest Polymeric Materials for Biomedical Applications, Mater. Horiz., 2014, 1, 185.

    Article  CAS  Google Scholar 

  23. W. a. Freeman, W. L. Mock and N.-Y. Y. Shih, Cucurbituril, J. Am. Chem. Soc, 1981, 103, 7367–7368.

    Article  CAS  Google Scholar 

  24. O. a. Gerasko, D. G. Samsonenko and V. P. Fedin, Supramolecular Chemistry of Cucurbiturils, Russ. Chem. Rev., 2002, 71, 741–760.

    Article  CAS  Google Scholar 

  25. R. Wang and D. H. Macartney, Cucurbit[7]uril Host-Guest Complexes of the Histamine H2-Receptor Antagonist Ranitidine, Org. Biomol. Chem., 2008, 6, 1955–1960.

    Article  CAS  PubMed  Google Scholar 

  26. N. J. Wheate, Improving pIatinum(II)-Based Anticancer Drug Delivery Using Cucurbit[n]urils, J. Inorg. Biochem., 2008, 102, 2060–2066.

    Article  CAS  PubMed  Google Scholar 

  27. X. L. Ni, S. F. Xue, Z. Tao, Q. J. Zhu, L. F. Lindoy and G. Wei, Advances in the Lanthanide Metallo-supramolecular Chemistry of the Cucurbit[n]urils, Coord. Chem. Rev., 2015, 287, 89–113.

    Article  CAS  Google Scholar 

  28. S. Walker, R. Oun, F. J. McInnes and N. J. Wheate, The Potential of Cucurbit[n]urils in Drug Delivery, Isr. J. Chem., 2011, 51, 616–624.

    Article  CAS  Google Scholar 

  29. S. D. Choudhury, J. Mohanty, H. Pal and A. C. Bhasikuttan, Cooperative Metal Ion Binding to a cucurbit[7]uril -Thioflavin T. Complex: Demonstration of a Stimulus-Responsive Fluorescent Supramolecular Capsule, J. Am. Chem. Soc, 2010, 132, 1395–1401.

    Article  CAS  PubMed  Google Scholar 

  30. V. Sindelar, M. A. Cejas, F. M. Raymo and A. E. Kaifer, Tight Inclusion Complexation of 2,7-DimethyIdiazapyrenium in cucurbit[7]uril, New J. Chem., 2005, 29, 280.

    Article  CAS  Google Scholar 

  31. J. W. Lee, S. Samal, N. Selvapalam, H. J. Kim and K. Kim, Cucurbituril Homologues and Derivatives: New Opportunities in Supramolecular Chemistry, Acc. Chem. Res., 2003, 36, 621–630.

    Article  CAS  PubMed  Google Scholar 

  32. V. D. Uzunova, C. Cullinane, K. Brix, W. M. Nau and A. I. Day, Toxicity of cucurbit[7]uril and cucurbit[8]uril: An Exploratory in Vitro and in Vivo Study, Org. Biomol. Chem., 2010, 8, 2037–2042.

    Article  CAS  PubMed  Google Scholar 

  33. C. Laurent, S. Eddarkaoui, M. Derisbourg, A. Leboucher, D. Demeyer, S. Carrier, M. Schneider, M. Hamdane, C. E. Miiller, L. Buee, et al., Beneficial Effects of Caffeine in a Transgenic Model of Alzheimer’s Disease-like Tau Pathology, Neurobiol. Aging, 2014, 35, 2079–2090.

    CAS  Google Scholar 

  34. F. J. Mclnnes, N. G. Anthony, A. R. Kennedy and N. J. Wheate, Solid State Stabilisation of the Orally Delivered Drugs Atenolol, Glibenclamide, Memantine and Paracetamol through Their Complexation with cucurbit[7] uril, Org. Biomol. Chem., 2010, 8, 765–773.

    Article  CAS  Google Scholar 

  35. M. A. Rankin and B. D. Wagner, Fluorescence Enhancement of Curcumin upon Inclusion into Cucurbituril, Supramol. Chem., 2004, 16, 513–519.

    Article  CAS  Google Scholar 

  36. T. Mosmann, Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays, J. Immunol. Methods, 1983, 65, 55–63.

    Article  CAS  PubMed  Google Scholar 

  37. S. Li, J. Y.-W. Chan, Y. Li, D. Bardelang, J. Zheng, W. W. Yew, D. P.- C. Chan, S. M. Y. Lee and R. Wang, Complexation of Clofazimine by Macrocyclic cucurbit[7] uril Reduced Its Cardiotoxicity without Affecting the Antimycobacterial Efficacy, Org. Biomol. Chem., 2016, 14, 7563–7569.

    Article  CAS  PubMed  Google Scholar 

  38. P. Sanphui, N. R. Goud, U. B. R. Khandavilli, S. Bhanoth, A. Nangia, H. Hatcher, R. Planalp, J. Cho, F. M. Torti, S. V. Torti, et al., New Polymorphs of Curcumin, Chem. Commun., 2011, 47, 5013.

    Article  CAS  Google Scholar 

  39. A. Albanese, P. S. Tang and W. C. W. Chan, [Review] The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems, Annu. Rev. Biomed. Eng., 2012, 14, 1–16.

    Article  CAS  PubMed  Google Scholar 

  40. A. Schadlich, H. Caysa, T. Mueller, F. Tenambergen, C. Rose, A. Gopferich, J. Kuntsche and K. Mader, Tumor Accumulation of NIR. Fluorescent PEG-PLA. Nanoparticles: Impact of Particle Size and Human Xenograft Tumor Model, ACS. Nano, 2011, 5, 8710–8720.

    Article  CAS  PubMed  Google Scholar 

  41. R. Benassi, E. Ferrari, S. Lazzari, F. Spagnolo and M. Saladini, Theoretical Study on Curcumin: A. Comparison of Calculated Spectroscopic Properties with NMR, UV-vis and IR. Experimental Data, J. Mol. Struct, 2008, 892, 168–176.

    Article  CAS  Google Scholar 

  42. E. Benassi and F. Spagnolo, A. Combined Theoretical and Experimental Approach to the Study of the Structural and Electronic Properties of Curcumin as a Function of the Solvent, J. Solution Chem., 2010, 39, 11–29.

    Article  CAS  Google Scholar 

  43. L. Shen and H.- F. Ji, Theoretical Study on Physicochemical Properties of Curcumin, Spectrochim. Acta, Part A, 2007, 67, 619–623.

    Article  CAS  Google Scholar 

  44. H. J. Buschmann, A. Wego, A. Zielesny and E. Schollmeyer, Structure, Electronic Properties and NMR-Shielding of Cucurbit[n]urils, J. Inclusion Phenom. Macrocyclic Chem., 2006, 54, 85–88.

    Article  CAS  Google Scholar 

  45. A. Suvitha, N. S. Venkataramanan, H. Mizuseki, Y. Kawazoe and N. Ohuchi, Theoretical Insights into the Formation, Structure, and Electronic Properties of Anticancer Oxaliplatin Drug and Cucurbit[n]urils N = 5 to 8, J. Inclusion Phenom. Macrocyclic Chem., 2010, 66, 213–218.

    Article  CAS  Google Scholar 

  46. M. Nora, M. Fatiha, N. Leila, H. Sakina and K. DjamelEddine, Density Functional Study of Inclusion Complex of Albendazole/cucurbit [7]uril: Structure, Electronic Properties, NBO, GIAO. and TD-DFT. Analysis, J. Mol. Liq., 2015, 211, 40–47.

    Article  CAS  Google Scholar 

  47. V. I. Lobyshev, R. E. Shikhlinskaya and B. D. Ryzhikov, Experimental Evidence for Intrinsic Luminescence of Water, J. Mol. Liq., 1999, 82, 73–81.

    Article  CAS  Google Scholar 

  48. P. Valle, J. Lafait, M. Ghomi, M. Jouanne and J. F. Morhange, Raman Scattering of Water and Photoluminescence of Pollutants Arising from Solid-Water Interaction, J. Mol. Struct, 2003, 651, 371–379.

    Article  CAS  Google Scholar 

  49. H. Ghosh, A. Possible Route to the Violation of Vavilov-Kasha Rule in -Conjugated Polymers, Chem. Phys. Lett, 2006, 426, 431–435.

    Article  CAS  Google Scholar 

  50. H.-W. Tseng, J.-Y. Shen, T.-Y. Kuo, T.-S. Tu, Y.-A. Chen, A. P. Demchenko and P.-T. Chou, Excited-State Intramolecular Proton-Transfer Reaction Demonstrating Anti-Kasha Behavior, Chem. Sci., 2016, 7, 655–665.

    Article  CAS  PubMed  Google Scholar 

  51. P. K. Mandal, A. Paul and A. Samanta, Excitation Wavelength Dependent Fluorescence Behavior of the Room Temperature Ionic Liquids and Dissolved Dipolar Solutes, J. Photochem. Photobiol, A, 2006, 182, 113–120.

    Article  CAS  Google Scholar 

  52. G. Brancato, G. Signore, P. Neyroz, D. Polli, G. Cerullo, G. Abbandonato, L. Nucara, V. Barone, F. Bertram and R. Bizzarri, Dual Fluorescence through Kasha’s Rule Breaking: An Unconventional Photomechanism for Intracellular Probe Design, J. Phys. Chem. B, 2015, 119, 6144–6154.

    Article  CAS  PubMed  Google Scholar 

  53. T. Itoh, Evidence for the Coexistence of Two Different Mechanisms for the Occurrence of Anti-Kasha S2 (1 (l)Bu) Fluorescence from Alpha,omega-DiphenyIpoIyenes, J. Chem. Phys., 2004, 121, 6956–6960.

    Article  CAS  PubMed  Google Scholar 

  54. H. Qian, M. E. Cousins, E. H. Horak, A. Wakefield, M. D. Liptak and I. Aprahamian, Suppression of Kasha’s Rule as a Mechanism for Fluorescent Molecular Rotors and Aggregation-Induced Emission, Nat. Chem., 2016, 1, 5.

    Google Scholar 

  55. Z. Miskolczy, M. Megyesi, G. Tarkanyi, R. Mizsei and L. Biczok, Inclusion Complex Formation of Sanguinarine Alkaloid with cucurbit[7]uril: Inhibition of Nucleophilic Attack and Photooxidation, Org. Biomol. Chem., 2011, 9, 1061–1070.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Severino Alves Junior.

Additional information

Electronic supplementary information (ESI) available: Luminescence data. See

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Azevedo, L.A., da Luz, L.L., de Ferro, J.N.S. et al. The new supra molecular nano-aggregate curcumin-cucurbit[7]uril: synthesis, photophysical properties and biocompatibility evaluation. Photochem Photobiol Sci 16, 663–671 (2017). https://doi.org/10.1039/c6pp00408c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00408c

Navigation