Skip to main content
Log in

Ru(ii)-Metal complex immobilized mesoporous SBA-15 hybrid for visible light induced photooxidation of chlorophenolic compounds in aqueous medium

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The work focuses on room-temperature photocatalytic degradation of phenolic compounds by Ru(ii)-complex immobilized mesoporous silica SBA-15 under visible light in an aqueous medium. The immobilization of [Ru(bpy)3]Cl2 complex on an SBA-15 surface is carried out, and the as-synthesized hybrid is characterized by X-ray Diffraction (XRD), Fourier Transformation IR Spectroscopy (FTIR), Diffuse Reflectance Spectroscopy (DRS), Brunauer–Emmett–Teller analysis (BET), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX) and X-ray Photoelectron Spectroscopy (XPS). Kinetic studies of photodegradation reactions are followed by High Performance Liquid Chromatography (HPLC). Control studies are performed to elucidate the nature of the photodegradation process. The maximum degradation of DCP reached 95% for 10 ppm concentration of the contaminants with an optimum amount of catalyst being 1 g L−1 in 150 min of light irradiation. The long-lived intermediates are identified by HPLC, and the final products are identified by GC-MS. From a series of experiments, the mechanistic steps of the photodegradation process are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Ordered Mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature., 1992, 359, 710.

    Article  CAS  Google Scholar 

  2. A. Monnier, F. Schuth, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. D. Stucky, M. Krishnamurty, P. Retroff, A. Firouzi, M. Janicke, and B. F. Chmelka, Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures, Science., 1993, 261, 1299.

    Article  CAS  PubMed  Google Scholar 

  3. J. M. Thomas, and G. Sankar, The role of synchrotron-based studies in the elucidation and design of active sites in titanium–silica epoxidation catalysts, Acc. Chem. Res., 2001, 34, 571.

    Article  CAS  PubMed  Google Scholar 

  4. X. Qian, K. Fuku, Y. Kuwahara, T. Kamegawa, K. Mori, and H. Yamashita, Design and functionalization of photocatalytic systems within mesoporous silica, ChemSusChem., 2014, 7, 1528.

    Article  CAS  PubMed  Google Scholar 

  5. C. S. Chen, C. C. Chen, C. T. Chen, and H. M. Kao, Synthesis of Cu Nanoparticles in Mesoporous Silica SBA-15 Functionalized with Carboxylic Acid Groups, Chem. Commun., 2011, 47, 2288.

    Article  CAS  Google Scholar 

  6. K. Inumaru, M. Yasui, T. Kasahara, K. Yamaguchi, A. Yasuda, and S. Yamanaka, Nanocomposites of crystalline TiO2 particles and mesoporous silica: molecular elective photocatalysis tuned by controlling pore size and structure, J. Mater. Chem., 2011, 21, 12117.

    Article  CAS  Google Scholar 

  7. X. Feng, M. Yan, T. Zhang, Y. Liu, and M. Bao, Preparation and application of SBA-15-supported palladium catalyst for Suzuki reaction in supercritical carbon dioxide, Green Chem., 2010, 12, 1758.

    Article  CAS  Google Scholar 

  8. Y. M. Liu, Y. Cao, N. Yi, W. L. Feng, W. L. Dai, S. R. Yan, H. Y. He, and K. N. Fan, Vanadium oxide supported on mesoporous SBA-15 as highly selective catalysts in the oxidative dehydrogenation of propane, J. Catal., 2004, 224, 417.

    Article  CAS  Google Scholar 

  9. J. Li, W. Ma, Y. Huang, X. Tao, J. Zhao, and Y. Xu, Oxidative degradation of organic pollutants utilizing molecular oxygen and visible light over a supported catalyst of [Fe(bpy)3]2+ in water, Appl. Catal., B., 2004, 48, 17.

    Article  CAS  Google Scholar 

  10. A. Kumar, P. Kumar, C. Joshi, S. Ponnada, A. K. Pathak, A. Ali, B. Sreedhard, and S. L. Jain, A [Fe(bpy)3]2+ grafted graphitic carbon nitride hybrid for visible light assisted oxidative coupling of benzylamines under mild reaction conditions, Green Chem., 2016, 18, 2514.

    Article  CAS  Google Scholar 

  11. M. Hara, J. T. Lean, and T. E. Mallouk, Photocatalytic oxidation of water by silica-supported Tris(4,4′-dialkyl-2,2′-bipyridyl)ruthenium polymeric sensitizers and colloidal iridium oxide, Chem. Mater., 2001, 13, 4668.

    Article  CAS  Google Scholar 

  12. Z. Ding, X. Hu, G. Q. Lu, P. L. Yue, and P. F. Greenfield, Novel silica gel supported TiO2 photocatalyst synthesized by CVD method, Langmuir., 2000, 16, 6216.

    Article  CAS  Google Scholar 

  13. D. Robert, A. Piscopo, O. Heintz, and J. V. Weber, Photocatalytic detoxification with TiO2 supported on glass-fibre by using artificial and natural light, Catal. Today., 1999, 54, 291.

    Article  CAS  Google Scholar 

  14. S. Gazi, and R. Ananthakrishnan, Metal-free-photocatalytic reduction of 4-nitrophenol by resin-supported dye under the visible irradiation, Appl. Catal., B., 2011, 105, 317.

    Article  CAS  Google Scholar 

  15. Md. Rakibuddin, S. Gazi, and R. Ananthakrishnan, Iron(II) phenanthroline-resin hybrid as a visible light-driven heterogeneous catalyst for green oxidative degradation of organic dye, Catal. Commun., 2015, 58, 53.

    Article  CAS  Google Scholar 

  16. B. V. Berlo, K. Houthoofd, B. F. Sels, and P. A. Jacobs, Silica immobilized second generation Hoveyda-Grubbs: a convenient, recyclable and storageable heterogeneous solid catalyst, Adv. Synth. Catal., 2008, 350, 1949.

    Article  CAS  Google Scholar 

  17. P. V. Kamat, Photochemistry on nonreactive and reactive (semiconductor) surfaces, Chem. Rev., 1993, 93, 267.

    Article  CAS  Google Scholar 

  18. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 1995, 95, 69.

    Article  CAS  Google Scholar 

  19. G. C. C. Yang, and S. W. Chan, Photocatalytic reduction of chromium(VI) in aqueous solution using dye-sensitized nanoscale ZnO under visible light irradiation, J. Nanopart. Res., 2009, 11, 221.

    Article  CAS  Google Scholar 

  20. S. Sarkar, A. Makhal, T. Bora, K. Lakhsman, A. Singha, J. Dutta, and S. K. Pal, Hematoporphyrin–ZnO nanohybrids: twin applications in efficient visible-light photocatalysis and dye-sensitized solar cells, ACS Appl. Mater. Interfaces., 2012, 4, 7027.

    Article  CAS  PubMed  Google Scholar 

  21. B. Meunier, Catalytic degradation of chlorinated phenols, Science., 2002, 296, 270.

    Article  CAS  PubMed  Google Scholar 

  22. T. Shigeoka, Y. Sato, Y. Takeda, K. Yoshida, and F. Yamaguchi, Acute toxicity of chlorophenols to green algae, Selenastrum capricornutum and Chlorella vulgaris, and quantitative structure–activity relationships, Environ. Toxicol. Chem., 1988, 7, 847.

    Article  CAS  Google Scholar 

  23. J. Zhang, H. Shen, X. Wang, J. Wu, and Y. Xue, Effects of chronic exposure of 2,4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus, Chemosphere., 2004, 55, 167.

    Article  CAS  PubMed  Google Scholar 

  24. P. Sawunyama, A. Fujishima, and K. Hashimoto, Photocatalysis on TiO2 surfaces investigated by atomic force microscopy: photodegradation of partial and full monolayers of stearic acid on TiO2(110), Langmuir., 1999, 15, 3551.

    Article  CAS  Google Scholar 

  25. V. Brezov, A. Blakovi, I. Surina, and B. Havlfnov, Solvent effect on the photocatalytic reduction of 4-nitrophenol in titanium dioxide suspensions, J. Photochem. Photobiol., A., 1997, 107, 233.

    Article  Google Scholar 

  26. D. Chu, Y. Masuda, T. Ohji, and K. Kato, Formation and photocatalytic application of ZnO nanotubes using aqueous solution, Langmuir., 2010, 26, 2811.

    Article  CAS  PubMed  Google Scholar 

  27. J. Zhan, H. Dong, Y. Liu, Y. Wang, Z. Chen, and L. Zhang, A novel synthesis and excellent photodegradation of flower-like ZnO hierarchical microspheres, CrystEngComm., 2013, 15, 10272.

    Article  CAS  Google Scholar 

  28. Y. Han, X. Wu, Y. Ma, L. Gong, F. Qu, and H. Fan, Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications, CrystEngComm., 2011, 13, 3506.

    Article  CAS  Google Scholar 

  29. G. Cheng, J. Chen, H. Ke, J. Shang, and R. Chu, Synthesis, characterization and photocatalysis of SnO2 nanorods with large aspect ratios, Mater. Lett., 2011, 65, 3327.

    Article  CAS  Google Scholar 

  30. A. Hernández-Gordillo, A. G. Romero, F. Tzompantzi, S. Oros-Ruiz, and R. Gómez, Kinetic study of the 4-Nitrophenol photooxidation and photoreduction reactions using CdS, Appl. Catal., B., 2014, 144, 507.

    Article  CAS  Google Scholar 

  31. T. P. Yoon, M. A. Ischay, and J. du, Visible light photocatalysis as a greener approach to photochemical synthesis, Nat. Chem., 2010, 2, 527.

    Article  CAS  PubMed  Google Scholar 

  32. P. Ceroni, G. Bergamini, and V. Balzani, Old molecules, new concepts: [Ru(bpy)3]2+ as a molecular encoder–decoder, Angew. Chem., Int. Ed., 2009, 48, 8516.

    Article  CAS  Google Scholar 

  33. J. M. R. Narayanam, and C. R. J. Stephenson, Visible light photoredox catalysis: applications in organic synthesis, Chem. Soc. Rev., 2011, 40, 102.

    Article  CAS  PubMed  Google Scholar 

  34. J. A. Broomhead, C. G. Young, and P. Hood, Tris(2,2′′-Bipyridine)ruthenium(II) dichloride hexahydrate, in Inorganic Syntheses: Reagents for transition metal complex and organometallic syntheses, ed. R. J. Angelici, John Wiley & Sons, Inc., Hoboken, NJ, USA, 1990, vol. 28.

  35. R. Ananthakrishnan, and S. Gazi, [Ru(bpy)3]2+ aided photocatalytic synthesis of 2-arylpyridines via Hantzsch reaction under visible irradiation and oxygen atmosphere, Catal. Sci. Technol., 2012, 2, 1463.

    Article  CAS  Google Scholar 

  36. K. Fujishima, A. Fukuoka, A. Yamagishi, S. Inagaki, Y. Fukushima, and M. Ichikawa, Photooxidation of benzene to phenol by ruthenium bipyridine complexes grafted on mesoporous silica FSM-16, J. Mol. Catal. A: Chem., 2001, 166, 211.

    Article  CAS  Google Scholar 

  37. S. Bhar, and R. Ananthakrishnan, Utilization of Ru(II)-complex immobilized ZnO hybrid in presence of Pt(II) co-catalyst for photocatalytic reduction of 4-nitrophenol under visible light, RSC Adv., 2015, 5, 20704.

    Article  CAS  Google Scholar 

  38. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science., 1998, 279, 548.

    Article  CAS  PubMed  Google Scholar 

  39. A. Mourhly, M. Khachani, A. E. Hamidi, Md. Kacimi, Md. Halim, and S. Arsalane, The synthesis and characterization of low-cost mesoporous silica SiO2 from local pumice rock, Nanomater. Nanotechnol., 2015, 5, 35.

    Article  CAS  Google Scholar 

  40. P. Kumar, C. Joshi, N. Labhsetwar, R. Boukherroub, and S. L. Jain, A novel Ru/TiO2 hybrid nanocomposite catalyzed photoreduction of CO2 to methanol under visible light, Nanoscale., 2015, 7, 15258.

    Article  CAS  PubMed  Google Scholar 

  41. M. Wrighton, and D. L. Morse, The nature of the lowest excited state in tricarbonylchloro-1,10-phenanthrolinerhenium(I) and related complexes, J. Am. Chem. Soc., 1974, 96, 998.

    Article  CAS  Google Scholar 

  42. P. Innocenzi, H. Kozuka, and T. Yoko, Fluorescence properties of the Ru(bpy)32+ complex incorporated in sol-gel-derived silica coating films, J. Phys. Chem. B., 1997, 101, 2285.

    Article  CAS  Google Scholar 

  43. K. Koh, J. E. Seo, J. H. Lee, A. Goswami, C. W. Yoon, and T. Asefa, Ultrasmall palladium nanoparticles supported on amine-functionalized SBA-15 efficiently catalyze hydrogen evolution from formic acid, J. Mater. Chem. A., 2014, 2, 20444.

    Article  CAS  Google Scholar 

  44. L. Zhou, J. Huang, B. Yu, and T. You, A novel self-enhanced electrochemiluminescence immunosensor based on hollow Ru-SiO2@PEI nanoparticles for NSE analysis, Sci. Rep., 2016, 22234, 1.

    Google Scholar 

  45. A. S. M. Chong, and X. S. Zhao, Functionalization of SBA-15 with APTES and characterization of functionalized materials, J. Phys. Chem. B., 2003, 107, 12650.

    Article  CAS  Google Scholar 

  46. J. C. Groen, L. A. A. Peffer, and J. Pereze-Ramirez, Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis, Microporous Mesoporous Mater., 2003, 60, 1.

    Article  CAS  Google Scholar 

  47. P. Chowdhury, J. Moreira, H. Gomaa, and A. K. Ray, Visible-solar-light-driven photocatalytic degradation of phenol with dye-sensitized TiO2: Parametric and kinetic study, Ind. Eng. Chem. Res., 2012, 51, 4523.

    Article  CAS  Google Scholar 

  48. D. Chen, and A. K. Ray, Photodegradation kinetics of 4-nitrophenol in TiO2 suspension, Water Res., 1998, 32, 3223.

    Article  CAS  Google Scholar 

  49. R. M. Mohamed, and I. A. Mkhalid, Characterization and catalytic properties of nano-sized Ag metal catalyst on TiO2–SiO2 synthesized by photo-assisted deposition and impregnation methods, J. Alloys Compd., 2010, 501, 301.

    Article  CAS  Google Scholar 

  50. M. Sun, Q. Zhao, X. Liu, C. Du, and Z. Liu, Comparative study on sandwich-structured SiO2@Ag@SnO2 and inverse SiO2@SnO2@Ag: key roles of shell ordering and interfacial contact in modulating the photocatalytic properties, RSC Adv., 2015, 5, 81059.

    Article  CAS  Google Scholar 

  51. M. Dai, L. Guan, F. Lia, and M. Yao, Titanium dioxide composite films for enhanced photocatalytic activity, Ceram. Int., 2014, 40, 7651.

    Article  CAS  Google Scholar 

  52. L. Sun, W. Wu, S. Yang, J. Zhou, M. Hong, X. Xiao, F. Ren, and C. Jiang, Template and Silica Interlayer Tailorable Synthesis of Spindle-like Multilayer α-Fe2O3/Ag/SnO2 Ternary Hybrid Architectures and Their Enhanced Photocatalytic Activity, ACS Appl. Mater. Interfaces., 2014, 6, 1113.

    Article  CAS  PubMed  Google Scholar 

  53. H. Ding, H. Sun, and Y. Shan, Preparation and characterization of mesoporous SBA-15 supported dye-sensitized TiO2 photocatalyst, J. Photochem. Photobiol., A., 2005, 169, 101.

    Article  CAS  Google Scholar 

  54. J. Yang, J. Zhang, L. Zhu, S. Chen, Y. Zhang, Y. Tang, Y. Zhu, and Y. Li, Synthesis of nano titania particles embedded in mesoporous SBA-15: Characterization and photocatalytic activity, J. Hazard. Mater., 2006, 137, 2, 952.

    Article  CAS  PubMed  Google Scholar 

  55. J. Ma, J. Chu, L. Qiang, and J. Xue, Synthesis and structural characterization of novel visible photocatalyst Bi–TiO2/SBA-15 and its photocatalytic performance, RSC Adv., 2012, 2, 3753.

    Article  CAS  Google Scholar 

  56. P. Boule, C. Guyon, and J. Lemaire, Photochemistry and environment IV- photochemical behaviour of monochlorophenols in dilute aqueous solution, Chemosphere., 1982, 11, 1179.

    Article  CAS  Google Scholar 

  57. U. D. Patel, and S. Suresh, Dechlorination of chlorophenols using magnesium–palladium bimetallic system, J. Hazard. Mater., 2007, 147, 431.

    Article  CAS  PubMed  Google Scholar 

  58. L. Yin, Z. Shen, J. Niu, J. Chen, and Y. Duan, Degradation of pentachlorophenol and 2,4-dichlorophenol by sequential visible-light driven photocatalysis and Laccase catalysis, Environ. Sci. Technol., 2010, 44, 9117.

    Article  CAS  PubMed  Google Scholar 

  59. C. Kormann, D. W. Bahnemann, and M. Hofmann, Photocatalytic production of H2O2 and organic peroxides in aqueous suspensions of TiO2, ZnO, and desert sand, Environ. Sci. Technol., 1988, 22, 798.

    Article  CAS  PubMed  Google Scholar 

  60. M. Stylidi, D. I. Konderides, and X. E. Verykios, Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions, Appl. Catal., B., 2004, 47, 189.

    Article  CAS  Google Scholar 

  61. Y. Kurimura, H. Yokota, and Y. Muraki, Visible light-induced oxidation of ascorbic acid and formation of hydrogen peroxide, Bull. Chem. Soc. Jpn., 1981, 54, 2450–2453.

    Article  CAS  Google Scholar 

  62. A. Fujishima, T. N. Tao, and D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol., C., 2000, 1, 1.

    Article  CAS  Google Scholar 

  63. C. Tung, and N. Sutin, Quenching of the luminescence of the Tris(2,2′-bipyridine) complexes of ruthenium(II) and osmium(II). Kinetic considerations and photogalvanic effects, J. Phys. Chem., 1975, 80, 97.

    Google Scholar 

  64. D. Meisel, W. A. Mulac, and J. Rabani, Transients in the flash photolysis of aqueous solutions of Tris(2,2′-bipyridine) ruthenium(II) ion, J. Phys. Chem., 1977, 81, 1449.

    Article  CAS  Google Scholar 

  65. K. R. Millington, and G. Maurdev, The generation of superoxide and hydrogen peroxide by exposure of fluorescent whitening agents to UVA radiation and its relevance to the rapid photoyellowing of whitened wool, J. Photochem. Photobiol., A., 2004, 165, 177.

    Article  CAS  Google Scholar 

  66. W. Zhao, Y. Sun, and F. Castellano, Visible-light induced water detoxification catalyzed by Pt(II) dye sensitized titania, J. Am. Chem. Soc., 2008, 130, 12566.

    Article  CAS  PubMed  Google Scholar 

  67. S. Sarkar, A. Makhal, T. Bora, K. Lakhsman, A. Singha, J. Dutta, and S. K. Pal, Hematoporphyrin–ZnO Nanohybrids: Twin applications in efficient visible-light photocatalysis and dye-sensitized solar cells, ACS Appl. Mater. Interfaces., 2012, 4, 7027.

    Article  CAS  PubMed  Google Scholar 

  68. A.-P. Y. Durand, and R. G. Brown, Photoreactions of 4-chlorophenol in aerated and deaerated aqueous solution: Use of LC-MS for photoproduct identification, Chemosphere., 1995, 31, 3595.

    Article  CAS  Google Scholar 

  69. A. H. Abdullah, Z. Zainal, Md. Z. Hussein, and U. I. Gaya, Photocatalytic degradation of 2,4-dichlorophenol in Irradiated aqueous ZnO suspension, Int. J. Chem., 2010, 2, 180.

    Google Scholar 

  70. H. Al-Ekabi, N. Serpone, E. Pelizzetti, C. Minero, M. A. Fox, and R. B. Draper, Kinetic studies in heterogeneous photocatalysis: TiO2-mediated degradation of 4-chlorophenol alone and in a three-component mixture of 4-chlorophenol, 2,4-dichlorophenol, and 2,4,5-trichlorophenol in air-equilibrated aqueous media, Langmuir., 1989, 5, 250.

    Article  CAS  Google Scholar 

  71. J. Theurich, M. Lindner, and D. W. Bahnemann, Photocatalytic degradation of 4-chlorophenol in aerated aqueous titanium dioxide suspensions: A kinetic and mechanistic study, Langmuir., 1996, 12, 6368.

    Article  CAS  Google Scholar 

  72. Md. Rakibuddin, and R. Ananthakrishnan, Effective photocatalytic dechlorination of 2,4- dichlorophenol by a novel graphene encapsulated ZnO/Co3O4 core–shell hybrid under visible light, Photochem. Photobiol. Sci., 2016, 15, 86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors, RA is grateful to SERB (DST), New Delhi for funding (SR/FT/CS-146/2011), and SB thanks the UGC for research fellowship. Further, the authors extend their acknowledgements to CRF-IIT-Kharagpur for TEM and EDX measurement and Department of Physics, IIT-Kharagpur for XPS data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajakumar Ananthakrishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhar, S., Ananthakrishnan, R. Ru(ii)-Metal complex immobilized mesoporous SBA-15 hybrid for visible light induced photooxidation of chlorophenolic compounds in aqueous medium. Photochem Photobiol Sci 16, 1290–1300 (2017). https://doi.org/10.1039/c6pp00363j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00363j

Navigation