Skip to main content

Advertisement

Log in

Safety evaluation of repeated intravenous infusion of sinoporphyrin with and without PDT in rats

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) is a promising antineoplastic modality in the oncology field. We assessed the safety of repeated intravenous administrations of sinoporphyrin, a porphyrin derivative, with and without illumination in rats. Toxicokinetic studies of single and multiple administrations of sinoporphyrin were also carried out. Sprague-Dawley rats were randomly assigned to the dark-toxicity and PDT groups. Animals in the dark toxicity group received an i.v. infusion of sinoporphyrin at 3 doses: 2 mg kg−1, 6 mg kg−1, and 18 mg kg−1. The PDT group included 2 doses of sinoporphyrin (2 mg kg−1 and 18 mg kg−1), and the rats received 60 J of 630 nm laser illumination 24 h after photosensitizer infusion. The treatments were repeated every 7 days for 5 cycles and were followed by a 14-day recovery period. Systematic analyses were conducted at the end of treatment and recovery periods. Blood samples were obtained 5 min, 30 min, 2 h, 8 h, 24 h, 48 h, 72 h, and 96 h after the first and fifth treatments for toxicokinetic studies. Sinoporphyrin-PDT led to the death of one out of 270 rats; the dead animal had been treated with 18 mg kg−1 sinoporphyrin and died at the end of the fifth PDT treatment. Liver injury, the primary toxicity observed in the study, was identified using biochemical tests, necropsy, and histopathology. Elevated white blood cell and neutrophil counts were found in the rats in both the dark toxicity and PDT groups. Skin lesions at the illumination site were obvious in the PDT group. Pigment deposits were detected in multiple organs such as the liver, spleen, lymph nodes, and ovaries in the 6 mg kg−1 and 18 mg kg−1 groups. No other abnormalities were observed. The toxicokinetic parameters of single and multiple sinoporphyrin administrations were calculated and compared. Repeated sinoporphyrin administrations both alone and in combination with laser illumination were tolerable, and all toxicities were transient. The no observed adverse effect level (NOAEL) for repeated sinoporphyrin administration and sinoporphyrin-PDT was 6 mg kg−1 and 2 mg kg−1, respectively. Further studies are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. L. Dalla Via and S. Marciani Magno, Photochemotherapy in the treatment of cancer, Curr. Med. Chem., 2001, 812, 1405–1418.

    Article  CAS  PubMed  Google Scholar 

  2. B. J. Qumseya, W. David and H. C. Wolfsen, Photodynamic Therapy for Barrett’s Esophagus and Esophageal Carcinoma, Clin. Endosc., 2013, 461, 30–37.

    Article  PubMed  PubMed Central  Google Scholar 

  3. G. Shafirstein, A. Battoo and K. Harris, et al., Photodynamic Therapy of Non-Small Cell Lung Cancer. Narrative Review and Future Directions, Ann. Am. Thorac. Soc., 2016, 132, 265–275.

    PubMed  PubMed Central  Google Scholar 

  4. T. Zoepf, Photodynamic therapy of cholangiocarcinoma, HPB, 2008, 103, 161–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. M. Biel, Advances in photodynamic therapy for the treatment of head and neck cancers, Lasers Surg. Med., 2006, 385, 349–355.

    Article  CAS  PubMed  Google Scholar 

  6. L. R. Braathen, R. M. Szeimies and N. Basset-Seguin, et al., Guidelines on the use of photodynamic therapy for nonmelanoma skin cancer: an international consensus. International Society for Photodynamic Therapy in Dermatology, 2005, J. Am. Acad. Dermatol., 2007, 561, 125–143.

    Article  PubMed  Google Scholar 

  7. J. Akimoto, Photodynamic Therapy for Malignant Brain Tumors, Neurol. Med. Chir., 2016, 564, 151–157.

    Article  Google Scholar 

  8. A. E. O’Connor, W. M. Gallagher and A. T. Byrne, Porphyrin and Nonporphyrin Photosensitizers in Oncology: Preclinical and Clinical Advances in Photodynamic Therapy, Photochem. Photobiol., 2009, 85, 1053–1074.

    Article  PubMed  CAS  Google Scholar 

  9. M. J. Garland, C. M. Cassidy and D. Woolfson, et al., Designing photosensitizers for photodynamic therapy: strategies, challenges and promising developments, Future Med. Chem., 2009, 14, 667–691.

    Article  CAS  PubMed  Google Scholar 

  10. S. K. Pushpan, S. Venkatraman and V. G. Anand, et al., Porphyrins in photodynamic therapy - a search for ideal photosensitizers, Curr. Med. Chem. Anticancer Agents, 2002, 22, 187–207.

    Article  CAS  PubMed  Google Scholar 

  11. R. Bonnett, Photodynamic therapy in historical perspective, Rev. Contemp. Pharmacother., 1999, 101, 1–17.

    CAS  Google Scholar 

  12. E. S. Nyman and P. H. Hynninen, Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy, J. Photochem. Photobiol., B, 2004, 731–2, 1–28.

    Article  CAS  Google Scholar 

  13. Q. Fang, Photodynamic therapy for cancer treatment and the new antitumor photosensitizer sinoporphyrin sodium, Chinese J. New Drugs, 2014, 2313, 1540–1545.

    CAS  Google Scholar 

  14. Q.-C. Fang and D. Yang, Ether-linked porphyrin dimer salts and their manufacturing method, CN, ZL200910179116.5, 2012-08-29.

  15. L. Wu, X. Wang and Q. Liu, et al., Sinoporphyrin sodium mediated photodynamic therapy inhibits the migration associated with collapse of F-actin filaments cytoskeleton in MDA-MB-231 cells, Photodiagn. Photodyn. Ther., 2016, 13, 58–65.

    Article  CAS  Google Scholar 

  16. J. Hu, X. Wang and Q. Liu, et al., Antitumor effect of sinoporphyrin sodium-mediated photodynamic therapy on human esophageal cancer Eca-109 cells, Photochem. Photobiol., 2014, 906, 1404–1412.

    Article  CAS  PubMed  Google Scholar 

  17. J. Zhihuan, S. Rui and L. Chao, et al., Inhibitory effects of DVDMS-2-based-photodynamic therapy on the growth of tumor in vitro and in vivo, Teratog., Carcinog., Mutagen., 2013, 253, 163–167.

    Google Scholar 

  18. X. Wang, J. Hu, P. Wang, et al., Analysis of the in vivo and in vitro effects of photodynamic therapy on breast cancer by using a sensitizer, sinoporphyrin sodium, Theranostics, 2015, 57, 772–786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. T. Yano, M. Muto and K. Minashi, et al., Photodynamic therapy as salvage treatment for local failure after chemoradiotherapy in patients with esophageal squamous cell carcinoma: a phase II study, Int. J. Cancer, 2012, 1315, 1228–1234.

    Article  CAS  PubMed  Google Scholar 

  20. K. Furuse, M. Fukuoka and H. Kato, et al., A prospective phase II study on photodynamic therapy with photofrin II for centrally located early-stage lung cancer. The Japan Lung Cancer Photodynamic Therapy Study Group, J. Clin. Oncol., 1993, 1110, 1852–1857.

    Article  CAS  PubMed  Google Scholar 

  21. S. P. Pereira, G. P. Aithal and K. Ragunath, et al., Safety and long term efficacy of porfimer sodium photodynamic therapy in locally advanced biliary tract carcinoma, Photodiagn. Photodyn. Ther., 2012, 94, 287–292.

    Article  CAS  Google Scholar 

  22. L. B. Rocha, F. Schaberle and J. M. Dąbrowski, et al., Intravenous Single-Dose Toxicity of Redaporfin-Based Photodynamic Therapy in Rodents, Int. J. Mol. Sci., 2015, 1612, 29236–29249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. L. Guyon, M. O. Farine and J. C. Lesage, et al., Photodynamic therapy of ovarian cancer peritoneal metastasis with hexaminolevulinate: a toxicity study, Photodiagn. Photodyn. Ther., 2014, 113, 265–274.

    Article  CAS  Google Scholar 

  24. R. S. Sellers, D. Morton and B. Michael, et al., Society of Toxicologic Pathology position paper: organ weight recommendations for toxicology studies, Toxicol. Pathol., 2007, 355, 751–755.

    Article  PubMed  Google Scholar 

  25. C. L. Bregman, R. R. Adler and D. G. Morton, et al., Recommended tissue list for histopathologic examination in repeat-dose toxicity and carcinogenicity studies: a proposal of the Society of Toxicologic Pathology (STP), Toxicol. Pathol., 2003, 312, 252–253.

    CAS  PubMed  Google Scholar 

  26. C. Ruehl-Fehlert, B. Kittel and G. Morawietz, et al., Revised guides for organ sampling and trimming in rats and mice–part 1, Exp. Toxicol. Pathol., 2003, 552–3, 91–106.

    Article  PubMed  Google Scholar 

  27. J. Min-ge, W. Hai-yan and S. Li-li, et al., Analysis of porphyrin photosensitizers using HPLC method, Acta Pharm. Sin., 2015, 508, 1021–1025.

    Google Scholar 

  28. S. Grimm, D. Mvondo and T. Grune, et al., The outcome of 5-ALA-mediated photodynamic treatment in melanoma cells is influenced by vitamin C and heme oxygenase-1, Biofactors, 2011, 371, 17–24.

    Article  CAS  PubMed  Google Scholar 

  29. A. Józkowicz and J. Dulak, Effects of protoporphyrins on production of nitric oxide and expression of vascular endothelial growth factor in vascular smooth muscle cells and macrophages, Acta Biochim. Pol., 2003, 501, 69–79.

    Article  PubMed  Google Scholar 

  30. N. G. Abraham and A. Kappas, Heme oxygenase and the cardiovascular-renal system, Free Radicals Biol. Med., 2005, 391, 1–25.

    Article  CAS  Google Scholar 

  31. W. Halina, D. Jozef and J. Alicja, Heme Oxygenase-1 in Tumor Biology and Therapy, Curr. Drug Targets, 2010, 1112, 1551–1570.

    Article  Google Scholar 

  32. D. Bressoud, V. Jomini and R. M. Tyrrell, Dark induction of haem oxygenase messenger RNA by haematoporphyrin derivative and zinc phthalocyanine; agents for photodynamic therapy, J. Photochem. Photobiol., B, 1992, 144, 311–318.

    Article  CAS  Google Scholar 

  33. M. Miyake, M. Ishii and K. Kawashima, et al., siRNA-mediated knockdown of the heme synthesis and degradation pathways: modulation of treatment effect of 5-aminolevulinic acid-based photodynamic therapy in urothelial cancer cell lines, Photochem. Photobiol., 2009, 854, 1020–1027.

    Article  CAS  PubMed  Google Scholar 

  34. D. Nowis, M. Legat and T. Grzela, et al., Heme oxygenase-1 protects tumor cells against photodynamic therapy-mediated cytotoxicity, Oncogene, 2006, 2524, 3365–3374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. J. Frank, M. R. Lornejad-Schäfer and H. Schöffl, et al., Inhibition of heme oxygenase-1 increases responsiveness of melanoma cells to ALA-based photodynamic therapy, Int. J. Oncol., 2007, 316, 1539–1545.

    CAS  PubMed  Google Scholar 

  36. W. J. de Vree, M. C. Essers and H. S. de Bruijn, et al., Evidence for an important role of neutrophils in the efficacy of photodynamic therapy in vivo, Cancer Res., 1996, 5613, 2908–2911.

    PubMed  Google Scholar 

  37. J. Sun, I. Cecic and C. S. Parkins, et al., Neutrophils as inflammatory and immune effectors in photodynamic therapy-treated mouse SCCVII tumours, Photochem. Photobiol. Sci., 2002, 19, 690–695.

    Article  CAS  PubMed  Google Scholar 

  38. P. C. Kousis, B. W. Henderson and P. G. Maier, et al., Photodynamic therapy enhancement of antitumor immunity is regulated by neutrophils, Cancer Res., 2007, 6721, 10501–10510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. H. S. de Bruijn, W. Sluiter and A. van der Ploeg-van den Heuvel, et al., Evidence for a bystander role of neutrophils in the response to systemic 5-aminolevulinic acid-based photodynamic therapy, Photodermatol., Photoimmunol. Photomed., 2006, 225, 238–246.

    Article  Google Scholar 

  40. T. M. Busch, Local physiological changes during photodynamic therapy, Lasers Surg. Med., 2006, 385, 494–499.

    Article  PubMed  Google Scholar 

  41. P. C. Mann, J. Vahle and C. M. Keenan, et al., International harmonization of toxicologic pathology nomenclature: an overview and review of basic principles, Toxicol. Pathol., 2012, 404 Suppl, 7S–13S.

    Article  PubMed  Google Scholar 

  42. J. R. Bloomer, Liver metabolism of porphyrins and haem, J. Gastroenterol. Hepatol., 1998, 133, 324–329.

    Article  CAS  PubMed  Google Scholar 

  43. N. Lin, C. Li, Z. Wang, et al., A safety study of a novel photosensitizer, sinoporphyrin sodium, for photodynamic therapy in Beagle dogs, Photochem. Photobiol. Sci., 2015, 144, 815–832.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfeng Wei.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c6pp00276e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, R., Lin, X., Zhang, J. et al. Safety evaluation of repeated intravenous infusion of sinoporphyrin with and without PDT in rats. Photochem Photobiol Sci 15, 1366–1376 (2016). https://doi.org/10.1039/c6pp00276e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00276e

Navigation