Skip to main content

Advertisement

Log in

A comparative study of the photophysics of phenyl, thienyl, and chalcogen substituted rhodamine dyes

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Although rhodamine dyes have been extensively studied for a variety of applications, many details of their photophysics are not yet fully understood, including the possible presence of a charge separated electronic state lying near the optically active excited singlet state and the role of twisting substituent groups in excited-state quenching. To address this, a large library of rhodamine dyes was studied in which the chalcogen is varied from O, to S and Se and the aryl group is either absent (in the pyronin series) or is a phenyl or thienyl substituent. Through an analysis of steady-state absorption spectroscopy, electrochemistry, X-ray crystallography, and quantum mechanical calculations, we show that the lowest unoccupied molecular orbital (LUMO) energy decreases in the O → S → Se series and when a phenyl or thienyl substituent is added. The reduction of the LUMO energy is larger for thienyl species in which the aromatic group has increased torsional flexibility. Excited state lifetimes and fluorescence quantum yields of these dyes in a high and low polarity solvent reveal dramatically different photophysics between chromophores with phenyl and thienyl substituents, due to a combination of torsional and inductive effects. In the pyronin and phenyl-substituted species, non-radiative decay can occur through an amine-to-xanthylium core charge separated state that is stabilized in a highly polar environment. In the thienyl derivatives, a lower energy excited state, which we term S′1, is accessed from S1via rotation of the aryl group and the excited state population rapidly equilibrates between S1 and S′1 in 6–30 ps. Preliminary photochemical hydrogen production data display the potential application of the thienyl derivatives for conversion of solar energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Marling, J. G. Hawley, E. M. Liston and W. B. Grant, Lasing Characteristics of Seventeen Visible-Wavelength Dyes Using a Coaxial-Flashlamp-Pumped Laser, Appl. Opt., 1974, 13, 2317–2320.

    Article  CAS  PubMed  Google Scholar 

  2. J. Yin, Y. Hu and J. Yoon, Fluorescent Probes and Bioimaging: Alkali Metals, Alkaline Earth Metals and Ph, Chem. Soc. Rev., 2015, 44, 4619–4644.

    Article  CAS  PubMed  Google Scholar 

  3. M. Beija, C. A. M. Afonso and J. M. G. Martinho, Synthesis and Applications of Rhodamine Derivatives as Fluorescent Probes, Chem. Soc. Rev., 2009, 38, 2410–2433.

    Article  CAS  PubMed  Google Scholar 

  4. A. M. Brouwer, Standards for Photoluminescence Quantum Yield Measurements in Solution (Iupac Technical Report), Pure Appl. Chem., 2011, 83, 1232–1242.

    Article  CAS  Google Scholar 

  5. T. Karstens and K. Kobs, Rhodamine B and Rhodamine 101 as Reference Substances for Fluorescence Quantum Yield Measurements, J. Phys. Chem., 1980, 84, 1871–1872.

    Article  CAS  Google Scholar 

  6. T. Fukaminato, Single-Molecule Fluorescence Photoswitching: Design and Synthesis of Photoswitchable Fluorescent Molecules, J. Photochem. Photobiol., C, 2011, 12, 177–208.

    Article  CAS  Google Scholar 

  7. T. Y. Ohulchanskyy, D. J. Donnelly, M. R. Detty and P. N. Prasad, Heteroatom Substitution Induced Changes in Excited-State Photophysics and Singlet Oxygen Generation in Chalcogenoxanthylium Dyes: Effect of Sulfur and Selenium Substitutions, J. Phys. Chem. B, 2004, 108, 8668–8672.

    Article  CAS  Google Scholar 

  8. S. L. Gibson, J. J. Holt, M. Ye, D. J. Donnelly, T. Y. Ohulchanskyy, Y. You and M. R. Detty, Structure–Activity Studies of Uptake and Phototoxicity with Heavy-Chalcogen Analogues of Tetramethylrosamine in Vitro in Chemosensitive and Multidrug-Resistant Cells, Bioorg. Med. Chem., 2005, 13, 6394–6403.

    Article  CAS  PubMed  Google Scholar 

  9. M. R. Detty, B. D. Calitree, A. Orchard, R. Eisenberg and T. McCormick, Method for Producing Hydrogen, US, 20130039845A1. 2013.

    Google Scholar 

  10. T. M. McCormick, B. D. Calitree, A. Orchard, N. D. Kraut, F. V. Bright, M. R. Detty and R. Eisenberg, Reductive Side of Water Splitting in Artificial Photosynthesis: New Homogeneous Photosystems of Great Activity and Mechanistic Insight, J. Am. Chem. Soc., 2010, 132, 15480–15483.

    Article  CAS  PubMed  Google Scholar 

  11. K. R. Mulhern, A. Orchard, D. F. Watson and M. R. Detty, Influence of Surface-Attachment Functionality on the Aggregation, Persistence, and Electron-Transfer Reactivity of Chalcogenorhodamine Dyes on TiO2, Langmuir, 2012, 28, 7071–7082.

    Article  CAS  PubMed  Google Scholar 

  12. J. R. Mann, M. K. Gannon, T. C. Fitzgibbons, M. R. Detty and D. F. Watson, Optimizing the Photocurrent Efficiency of Dye-Sensitized Solar Cells through the Controlled Aggregation of Chalcogenoxanthylium Dyes on Nanocrystalline Titania Films, J. Phys. Chem. C, 2008, 112, 13057–13061.

    Article  CAS  Google Scholar 

  13. R. P. Sabatini, W. T. Eckenhoff, A. Orchard, K. R. Liwosz, M. R. Detty, D. F. Watson, D. W. McCamant and R. Eisenberg, From Seconds to Femtoseconds: Solar Hydrogen Production and Transient Absorption of Chalcogenorhodamine Dyes, J. Am. Chem. Soc., 2014, 136, 7740–7750.

    Article  CAS  PubMed  Google Scholar 

  14. F. Arbeloa, T. Arbeloa, P. Bartolomé, M. Estévez and I. Arbeloa, Tict and Ulm Models for the Radiationless Deactivation of Rhodamines, Proc. Indiana Acad. Sci. Chem. Sci., 1992, 104, 165–171.

    Google Scholar 

  15. K. G. Casey and E. L. Quitevis, Effect of Solvent Polarity on Nonradiative Processes in Xanthene Dyes: Rhodamine B in Normal Alcohols, J. Phys. Chem., 1988, 92, 6590–6594.

    Article  CAS  Google Scholar 

  16. X.-F. Zhang, Y. Zhang and L. Liu, Fluorescence Lifetimes and Quantum Yields of Ten Rhodamine Derivatives: Structural Effect on Emission Mechanism in Different Solvents, J. Lumin., 2014, 145, 448–453.

    Article  CAS  Google Scholar 

  17. J. Li-Lin, L. Wei-Long, S. Yun-Fei and S. Shan-Lin, Photo-Induced Intramolecular Electron Transfer and Intramolecular Vibrational Relaxation of Rhodamine 6 g in DMSO Revealed by Multiplex Transient Grating Spectroscopy, Chin. Phys. B, 2014, 23, 107802.

    Article  CAS  Google Scholar 

  18. M. Savarese, U. Raucci, C. Adamo, P. A. Netti, I. Ciofini and N. Rega, Non-Radiative Decay Paths in Rhodamines: New Theoretical Insights, Phys. Chem. Chem. Phys., 2014, 16, 20681–20688.

    Article  CAS  PubMed  Google Scholar 

  19. P. Plaza, N. Dai Hung, M. M. Martin, Y. H. Meyer, M. Vogel and W. Rettig, Ultrafast Internal Charge Transfer in a Donor-Modified Rhodamine, Chem. Phys., 1992, 168, 365–373.

    Article  CAS  Google Scholar 

  20. M. M. Martin, P. Plaza, P. Changenet and Y. H. Meyer, Investigation of Excited-State Charge Transfer with Structural Change in Compounds Containing Anilino Subunits by Subpicosecond Spectroscopy, J. Photochem. Photobiol., A, 1997, 105, 197–204.

    Article  CAS  Google Scholar 

  21. X.-F. Zhang, The Effect of Phenyl Substitution on the Fluorescence Characteristics of Fluorescein Derivatives Via Intramolecular Photoinduced Electron Transfer, Photochem. Photobiol. Sci., 2010, 9, 1261–1268.

    Article  CAS  PubMed  Google Scholar 

  22. Y.-H. Ahn, J.-S. Lee and Y.-T. Chang, Combinatorial Rosamine Library and Application to in Vivo Glutathione Probe, J. Am. Chem. Soc., 2007, 129, 4510–4511.

    Article  CAS  PubMed  Google Scholar 

  23. K. R. Mulhern, M. R. Detty and D. F. Watson, Effects of Surface-Anchoring Mode and Aggregation State on Electron Injection from Chalcogenorhodamine Dyes to Titanium Dioxide, J. Photochem. Photobiol., A, 2013, 264, 18–25.

    Article  CAS  Google Scholar 

  24. K. R. Mulhern, M. R. Detty and D. F. Watson, Aggregation-Induced Increase of the Quantum Yield of Electron Injection from Chalcogenorhodamine Dyes to TiO(2), J. Phys. Chem. C, 2011, 115, 6010–6018.

    Article  CAS  Google Scholar 

  25. C. Teng, X. Yang, C. Yang, H. Tian, S. Li, X. Wang, A. Hagfeldt and L. Sun, Influence of Triple Bonds as Π-Spacer Units in Metal-Free Organic Dyes for Dye-Sensitized Solar Cells, J. Phys. Chem. C, 2010, 114, 11305–11313.

    Article  CAS  Google Scholar 

  26. P. Gao, H. N. Tsao, M. Grätzel and M. K. Nazeeruddin, Fine-Tuning the Electronic Structure of Organic Dyes for Dye-Sensitized Solar Cells, Org. Lett., 2012, 14, 4330–4333.

    Article  CAS  PubMed  Google Scholar 

  27. S. Wang, J. Guo, L. He, H. Wang, J. Zhao and C. Lu, Influence of Thiophene and Benzene Unit in Triphenylamine Dyes on the Performance of Dye-Sensitized Solar Cells, Synth. Met., 2013, 168, 1–8.

    Article  CAS  Google Scholar 

  28. V. Barone, J. Bloino, S. Monti, A. Pedone and G. Prampolini, Fluorescence Spectra of Organic Dyes in Solution: A Time Dependent Multilevel Approach, Phys. Chem. Chem. Phys., 2011, 13, 2160–2166.

    Article  CAS  PubMed  Google Scholar 

  29. B. Acemiolu, M. Arık and Y. Onganer, Solvent Effect on Nonradiative Process of Pyronin B in Protic and Aprotic Solvent Systems, J. Lumin., 2002, 97, 153–160.

    Article  Google Scholar 

  30. B. Reija, W. Al-Soufi, M. Novo and J. Vázquez Tato, Specific Interactions in the Inclusion Complexes of Pyronines Y and B with B-Cyclodextrin, J. Phys. Chem. B, 2005, 109, 1364–1370.

    Article  CAS  PubMed  Google Scholar 

  31. M. Savarese, A. Aliberti, I. De Santo, E. Battista, F. Causa, P. A. Netti and N. Rega, Fluorescence Lifetimes and Quantum Yields of Rhodamine Derivatives: New Insights from Theory and Experiment, J. Phys. Chem. A, 2012, 116, 7491–7497.

    Article  CAS  PubMed  Google Scholar 

  32. N. K. Brennan, D. J. Donnelly and M. R. Detty, Selenoxanthones Via Directed Metalations in 2-Arylselenobenzamide Derivatives, J. Org. Chem., 2003, 68, 3344–3347.

    Article  CAS  PubMed  Google Scholar 

  33. B. Calitree, D. J. Donnelly, J. J. Holt, M. K. Gannon, C. L. Nygren, D. K. Sukumaran, J. Autschbach and M. R. Detty, Tellurium Analogues of Rosamine and Rhodamine Dyes: Synthesis, Structure, 125Te NMR, and Heteroatom Contributions to Excitation Energies, Organometallics, 2007, 26, 6248–6257.

    Article  CAS  Google Scholar 

  34. S. J. Wagner, A. Skripchenko, D. J. Donnelly, K. Ramaswamy and M. R. Detty, Chalcogenoxanthylium Photosensitizers for the Photodynamic Purging of Blood-Borne Viral and Bacterial Pathogens, Bioorg. Med. Chem., 2005, 13, 5927–5935.

    Article  CAS  PubMed  Google Scholar 

  35. M. K. Gannon and M. R. Detty, Generation of 3- and 5-Lithiothiophene-2-Carboxylates Via Metal−Halogen Exchange and Their Addition Reactions to Chalcogenoxanthones, J. Org. Chem., 2007, 72, 2647–2650.

    Article  CAS  PubMed  Google Scholar 

  36. J. J. Snellenburg, S. P. Laptenok, R. Seger, K. M. Mullen and I. H. M. van Stokkum, Glotaran: A Java-Based Graphical User Interface for the R Package Timp, J. Stat. Softw., 2012, 49, 1–22.

    Article  Google Scholar 

  37. S. Hattori, K. Ohkubo, Y. Urano, H. Sunahara, T. Nagano, Y. Wada, N. V. Tkachenko, H. Lemmetyinen and S. Fukuzumi, Charge Separation in a Nonfluorescent Donor−Acceptor Dyad Derived from Boron Dipyrromethene Dye, Leading to Photocurrent Generation, J. Phys. Chem. B, 2005, 109, 15368–15375.

    Article  CAS  PubMed  Google Scholar 

  38. G. M. Sheldrick, A Short History of Shelx, Acta Crystallogr., Sect. A: Fundam. Crystallogr., 2008, 64, 112–122.

    Article  CAS  Google Scholar 

  39. M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, M. Mallamo, A. Mazzone, G. Polidori and R. Spagna, Sir2011: A New Package for Crystal Structure Determination and Refinement, J. Appl. Crystallogr., 2012, 45, 357–361.

    Article  CAS  Google Scholar 

  40. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci and G. A. Petersson, et al., Gaussian 09, Gaussian, Inc., Wallingford, CT, 2009.

    Google Scholar 

  41. A. D. Becke, Density-Functional Thermochemistry.3. The Role of Exact Exchange, J. Chem. Phys., 1993, 98, 5648–5652.

    Article  CAS  Google Scholar 

  42. M. J. Frisch, J. A. Pople and J. S. Binkley, Self-Consistent Molecular Orbital Methods 25. Supplementary Functions for Gaussian Basis Sets, J. Chem. Phys., 1984, 80, 3265–3269.

    Article  CAS  Google Scholar 

  43. W. J. Hehre, R. Ditchfield and J. A. Pople, Self—Consistent Molecular Orbital Methods. Xii. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules, J. Chem. Phys., 1972, 56, 2257–2261.

    Article  CAS  Google Scholar 

  44. R. Bauernschmitt and R. Ahlrichs, Treatment of Electronic Excitations within the Adiabatic Approximation of Time Dependent Density Functional Theory, Chem. Phys. Lett., 1996, 256, 454–464.

    Article  CAS  Google Scholar 

  45. J. Tomasi, B. Mennucci and R. Cammi, Quantum Mechanical Continuum Solvation Models, Chem. Rev., 2005, 105, 2999–3093.

    Article  CAS  PubMed  Google Scholar 

  46. G. Schaftenaar and J. H. Noordik, Molden: A Pre- and Post-Processing Program for Molecular and Electronic Structures, J. Comput. Aided Mol. Des., 2000, 14, 123–134.

    Article  CAS  PubMed  Google Scholar 

  47. G. Tombline, D. J. Donnelly, J. J. Holt, Y. You, M. Ye, M. K. Gannon, C. L. Nygren and M. R. Detty, Stimulation of P-Glycoprotein Atpase by Analogues of Tetramethylrosamine: Coupling of Drug Binding at the “R” Site to the Atp Hydrolysis Transition State, Biochemistry, 2006, 45, 8034–8047.

    Article  CAS  PubMed  Google Scholar 

  48. M. Fischer and J. Georges, Fluorescence Quantum Yield of Rhodamine 6G in Ethanol as a Function of Concentration Using Thermal Lens Spectrometry, Chem. Phys. Lett., 1996, 260, 115–118.

    Article  CAS  Google Scholar 

  49. R. Velapoldi and H. Tønnesen, Corrected Emission Spectra and Quantum Yields for a Series of Fluorescent Compounds in the Visible Spectral Region, J. Fluoresc., 2004, 14, 465–472.

    Article  CAS  PubMed  Google Scholar 

  50. R. Sens and K. H. Drexhage, Fluorescence Quantum Yield of Oxazine and Carbazine Laser Dyes, J. Lumin., 1981, 24–25Part 2, 709–712.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael R. Detty, Richard Eisenberg or David W. McCamant.

Additional information

Electronic supplementary information (ESI) available: The synthesis of Se-Pyr, S-Pyr, and S-Th-5-PO(OEt)2, further details for the synthesis of O/S/Se-Th-5-CO2H, additional absorption spectra, crystallography results, cyclic voltammograms, transient absorption spectra, evolution associated spectra (EAS), spectroelectrochemistry results, computational results, and hydrogen evolution studies. CCDC 1446523 and 1446524. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6pp00233a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabatini, R.P., Mark, M.F., Mark, D.J. et al. A comparative study of the photophysics of phenyl, thienyl, and chalcogen substituted rhodamine dyes. Photochem Photobiol Sci 15, 1417–1432 (2016). https://doi.org/10.1039/c6pp00233a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00233a

Navigation