Skip to main content
Log in

An approach to utilize the artificial high power LED UV-A radiation in photoreactors for the degradation of methylene blue

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Utilization of UV LED light is trending in the development of photoreactors for pollutant treatment. In this study, two different geometries were studied in the degradation of methylenebBlue (MB) using high power UVA LED as a source of light. The dosage, initial concentration, electric power, and H2O2 addition were evaluated in the two geometries: a mini CPC (Cilindrical Parabolic Collector) and a vertical cylindrical with external irradiation both coupled with LED UVA. Best degradation was obtained for 0.3 g L−1 TiO2, 40 min, and 15 ppm of MB of initial concentration in the standard batch reactor. It was found that the best system was a cpc geometry. Also, hydrogen peroxide was used as an electron acceptor and 97% degradation was obtained in 30 min with 10 mM H2O2 and 0.4 g TiO2/L. Power of the LEDs was also evaluated and it was found that 20 W m−2 is the best operational condition to achieve the best MB degradation avoiding the oxidant species recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Houas, Appl. Catal., B, 2001, 12, 145–157.

    Article  Google Scholar 

  2. X. Doménech, W. F. Jardim and M. I. Litter, Eliminacion de contaminantes porfotocatalisis heterogenea, CYTED, 2001.

    Google Scholar 

  3. W.-K. Jo and R. J. Tayade, Chin. J. Catal., 2014, 35, 1781–1792.

    Article  CAS  Google Scholar 

  4. W. Jo and R. J. Tayade, lnd. Eng. Chem. Res., 2014, 53, 2073–2084.

    Article  CAS  Google Scholar 

  5. R. J. Tayade, T. S. Natarajan and H. C. Bajaj, lnd. Eng. Chem. Res., 2009, 12, 10262–10267.

    Article  Google Scholar 

  6. W. Kuen and R. J. Tayade, Chin. J. Catal., 2014, 35, 1781–1792.

    Article  Google Scholar 

  7. H. Huang, D. Y. C. Leung, P. C. W. Kwong, J. Xiong and L. Zhang, Catal. Today, 2013, 12, 189–194.

    Article  Google Scholar 

  8. W.-K. Jo and R. J. Tayade, Biochem. Pharmacol., 2016, 12, 319–327.

    Google Scholar 

  9. E. Repo, S. Rengaraj, S. Pulkka, E. Castangnoli, S. Suihkonen, M. Sopanen and M. Sillanpää, Sep. Purif. Technol., 2013, 12, 206–214.

    Article  Google Scholar 

  10. K. Natarajan, T. S. Natarajan, H. C. Bajajand R. J. Tayade, Chem. Eng. J., 2011, 12, 40–49.

    Article  Google Scholar 

  11. L. C. Ferreira, M. S. Lucas, J. R. Fernandes and P. B. Tavares, J. Environ. Chem. Eng., 2016, 12, 109–114.

    Article  Google Scholar 

  12. W.-K. Jo and R. J. Tayade, J. Mater. Eng. Perform., 2016, 12, 83–90.

    Article  Google Scholar 

  13. K. Natarajan, H. C. Bajajand R. J. Tayade, J. Ind. Eng. Chem., 2016, 12, 146–156.

    Article  Google Scholar 

  14. J. Rodriguez-Chueca, L. C. Ferreira, J. R. Fernandes, P. B. Tavares, M. S. Lucas and J. A. Peres, J. Environ. Chem. Eng., 2015, 12, 2948–2956.

    Article  Google Scholar 

  15. M. Rasoulifard, M. Fazli and M. Eskandarian, J. Ind. Eng. Chem., 2014, 12, 3695–3702.

    Article  Google Scholar 

  16. T. S. Natarajan, M. Thomas, K. Natarajan, H. C. Bajajand R. J. Tayade, Chem. Eng.J., 2011, 12, 126–134.

    Article  Google Scholar 

  17. T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao and N. Serpone, J. Photochem. Photobiol., A, 2001, 12, 163–172.

    Article  Google Scholar 

  18. K. Dai, L. Lu and G. Dawson, J. Mater. Eng. Perform., 2013, 12, 1035–1040.

    Article  Google Scholar 

  19. L. C. Ferreira, M. S. Lucas, J. R. Fernandes and P. B. Tavares, J. Environ. Chem. Eng., 2016, 12, 109–114.

    Article  Google Scholar 

  20. W. K. Jo and H. J. Kang, Chin. J. Catal., 2012, 12, 1672–1680.

    Article  Google Scholar 

  21. K. Villa, S. Murcia-Lopez, T. Andreu and J. R. Morante, Appl. Catal., B, 2015, 12, 150–155.

    Article  Google Scholar 

  22. K. Natarajan, T. S. Natarajan, H. C. Bajajand R. J. Tayade, Chem. Eng.J., 2011, 12, 40–49.

    Article  Google Scholar 

  23. B. I. Stefanov, N. V. Kaneva, G. L. Puma and C. D. Dushkin, Colloids Surf., A, 2011, 382, 219–225.

    Article  CAS  Google Scholar 

  24. M. Ge, Y. Chen, M. Liu and M. Li, J. Environ. Chem. Eng., 2015, 12, 2809–2815.

    Article  Google Scholar 

  25. J. H. Lee, E. J. Park, D. H. Kim, M. Jeong and Y. D. Kim, Catal. Today, 2016, 12, 32–38.

    Article  CAS  Google Scholar 

  26. C. Valero-Luna, S. A. Palomares-Sanchéz and F. Ruiz, Catal. Today, 2016, 12, 110–119.

    Article  Google Scholar 

  27. N. G. Moustakas, A. G. Kontos, V. Likodimos, F. Katsaros, N. Boukos, D. Tsoutsou, A. Dimoulas, G. E. Romanos, D. D. Dionysiou and P. Falaras, Appl. Catal., B, 2013, 130-131, 14–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Machuca-Martínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betancourt-Buitrago, L.A., Vásquez, C., Veitia, L. et al. An approach to utilize the artificial high power LED UV-A radiation in photoreactors for the degradation of methylene blue. Photochem Photobiol Sci 16, 79–85 (2017). https://doi.org/10.1039/c6pp00230g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00230g

Navigation