Skip to main content
Log in

Light harvesting a gold porphyrin—zinc phthalocyanine supramolecular donor—acceptor dyad

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We reported herein the spectroscopic, electrochemical and laser photolysis studies for the newly constructed light harvesting supramolecular dyad composed of gold porphyrin (AuPpy), as an electron acceptor, and zinc phthalocyanine (ZnPc), as an electron donor, to mimic the reaction centre in the photosynthetic system. For this, gold porphyrin has been functionalized by pyridine units, which axially coordinated with zinc phthalocyanine to form the stable supramolecular AuPpy:ZnPc with a rate of 2.94 × 104 M−1. Steady-state fluorescence measurements showed significant quenching of the singlet excited ZnPc emission with addition of AuPpy, suggesting an electron transfer from the singlet excited ZnPc to AuPpy. The electron transfer character was confirmed by recoding the characteristic absorption band of the zinc phthalocyanine radical cation in the NIR region by a femtosecond laser photolysis technique. The findings that the AuPpy:ZnPc supramolecular dyad exhibits relatively long-lived radical-ion pairs and absorbs light in a wide range of the solar spectrum suggest that it would be useful as a photosynthetic reaction centre.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. N. Armaroli and V. Balzani, Solar electricity and solar fuels: status perspectives in the context of the energy transition, Chem.–Eur. J., 2016, 22, 32–57.

    Article  CAS  Google Scholar 

  2. S. Fukuzumi, K. Ohkubo and T. Suenobu, Long-lived charge separation and applications in artificial photosynthesis, Acc. Chem. Res., 2014, 47, 1455–1464.

    Article  CAS  Google Scholar 

  3. M. D. Kärkäs, E. V. Johnston, O. Verho and B. Åkermark, Artificial photosynthesis: from nanosecond electron transfer to catalytic water oxidation, Acc. Chem. Res., 2014, 47, 100–111.

    Article  Google Scholar 

  4. R. E. Blankenship, in Anoxygenic Photosynthetic Bacteria, ed. M. T. Madigan and C. E. Bauer, Kluwe Academic Publishers, 1995.

  5. D. Gust and T. A. Moore, Mimicking photosynthesis, Science, 1989, 244, 35–41.

    Article  CAS  Google Scholar 

  6. Photochemical Conversion and Storage of Solar Energy, ed. J. S. Connolly, Academic, New York, 1981.

    Google Scholar 

  7. Introduction of Molecular Electronics, ed. M. C. Petty, M. R. Bryce and D. Bloor, Oxford University Press, New York, 1995.

    Google Scholar 

  8. N. Busschaert, C. Caltogirone, W. van Rossom and P. A. Gate, Applications of supramolecular anion recognition, Chem. Rev., 2015, 115, 8038–9155.

    Article  CAS  Google Scholar 

  9. M. R. Wasielewski, Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems, Acc. Chem. Res., 2009, 42, 1910–1921.

    Article  CAS  Google Scholar 

  10. D. Gust, T. A. Moore and A. L. Moore, Solar fuels via artificial photosynthesis, Acc. Chem. Res., 2009, 42, 1890–1898.

    Article  CAS  Google Scholar 

  11. A. Listorti, J. Durrant and J. Barber, Artificial photosynthesis: solar to fuel, Nat. Mater., 2009, 8, 929–930.

    Article  CAS  Google Scholar 

  12. M. E. El-Khouly, C. Gol, M. M. El-Hendawy, S. Yesilot and S. Fukuzumi, Energy-transfer studies on phthalocyanine-BODIPY light harvesting pentad by laser flash photolysis, J. Porphyrins Phthalocyanines, 2015, 10, 261–269.

    Article  Google Scholar 

  13. M. E. El-Khouly, S. Fukuzumi and F. D’Souza, Photosynthetic antenna-reaction center mimicry by using boron dipyrromethene sensitizers, ChemPhysChem, 2014, 15, 30–47.

    Article  CAS  Google Scholar 

  14. W.-J. Shi, M. E. El-Khouly, K. Ohkubo, S. Fukuzumi and D. K. P. Ng, Photosynthetic antenna-reaction center mimicry with a covalently linked monostyryl boron-dipyrromethene–aza-boron-dipyrromethene–C60 triad, Chem.–Eur. J., 2013, 19, 11332–11341.

    Article  CAS  Google Scholar 

  15. V. Bandi, M. E. El-Khouly, V. N. Nestrov, P. A. Karr, S. Fukuzumi and F. D’Souza, Self-assembled via metal–ligand coordination azaBODIPY–zinc phthalocyanine and azaBODIPY–zinc naphthalocyanine conjugates: synthesis, structure, and photoinduced electron transfer, J. Phys. Chem. C, 2013, 117, 5638–5649.

    Article  CAS  Google Scholar 

  16. M. E. El-Khouly, A. N. Amin, M. E. Zandler, S. Fukuzumi and F. D’Souza, Near-IR excitation transfer and electron transfer in a BF2-chelated dipyrromethane–azadipyrromethane dyad and triad, Chem.–Eur. J., 2012, 18, 5239–5247.

    Article  CAS  Google Scholar 

  17. M. E. El-Khouly, C. A. Wijesinghe, V. N. Nesterov, M. E. Zandler, S. Fukuzumi and F. D’Souza, Ultrafast photoinduced energy and electron transfer in multi-modular donor–acceptor conjugates, Chem.–Eur. J., 2012, 18, 13844–13853.

    Article  CAS  Google Scholar 

  18. M. E. El-Khouly, J.-H. Kim, J.-H. Kim, K.-Y. Kay and S. Fukuzumi, Subphthalocyanines as light-harvesting electron donor and electron acceptor in artificial photosynthetic systems, J. Phys. Chem. C, 2012, 116, 19709–19717.

    Article  CAS  Google Scholar 

  19. J. Y. Liu, M. E. El-Khouly, S. Fukuzumi and D. K. P. Ng, Mimicking photosynthetic antenna-reaction-center complexes with a (boron dipyrromethene)3–porphyrin–C60 pentad, Chem.–Eur. J., 2011, 17, 1605–1613.

    Article  CAS  Google Scholar 

  20. M. E. El-Khouly, P. M. Smith, O. Ito and F. D’Souza, Intermolecular and supramolecular photoinduced electron transfer processes of fullerene–porphyrin/phthalocyanine systems, J. Photochem. Photobiol., C, 2004, 5, 79–104.

    Article  CAS  Google Scholar 

  21. F. D’Souza, A. N. Amin, M. E. El-Khouly, N. K. Subbaiyan, M. E. Zandler and S. Fukuzumi, Control over photoinduced energy and electron transfer in supramolecular polyads of covalently linked azaBODIPY-Bisporphyrin ‘molecular clip’ hosting fullerene, J. Am. Chem. Soc., 2012, 134, 654–664.

    Article  Google Scholar 

  22. A. M. V. M. Pereira, A. Hausmann, J. P. C. Tomé, O. Trukhina, M. Urbani, M. G. P. M. S. Neves, J. A. S. Cavaleiro, D. M. Guldi and T. Torres, Porphyrin–phthalocyanine/pyridylfullerene supramolecular assemblies, Chem.–Eur. J., 2012, 18, 3210–3219.

    Article  CAS  Google Scholar 

  23. S. Fukuzumi, K. Ohkubo, W. E., Z. Ou, J. Shao, K. M. Kadish, J. A. Hutchison, K. P. Ghiggino, P. J. Sintic and M. J. Crossley, Metal-centered photoinduced electron transfer reduction of a gold(III) porphyrin cation linked with a zinc porphyrin to produce a long-lived charge-separated state in nonpolar solvents, J. Am. Chem. Soc., 2003, 125, 14984–14985.

    Article  CAS  Google Scholar 

  24. J. Fortage, J. Boixel, E. Blart, L. Hammarström, H. C. Becker and F. Odobel, Single-step electron transfer on the nanometer scale: ultra-fast charge shift in strongly coupled zinc porphyrin-gold porphyrin dyads, Chem.–Eur. J., 2008, 14, 3467–3480.

    Article  CAS  Google Scholar 

  25. J. Fortage, A. Scarpaci, L. Viau, Y. Pellegrin, E. Blart, M. Falkenstrom, L. Hammarstrom, I. Asselberghs, R. Kellens, W. Libaers, K. Clays, M. P. Eng and F. Odobel, Charge-transfer state and large first hyperpolarizability constant in a highly electronically coupled zinc and gold porphyrin dyad, Chem.–Eur. J., 2009, 15, 9058–9067.

    Article  CAS  Google Scholar 

  26. S. Prei, J. Melomedov, A. W. von Leupoldt and K. Heinze, Gold(III) tetraarylporphyrin amino acid derivatives: ligand or metal centred redox chemistry, Chem. Sci., 2016, 7, 596–610.

    Article  Google Scholar 

  27. P. K. Poddutoori, G. N. Lim, S. Vassiliev and F. D’Souza, Ultrafast charge separation and charge stabilization in axially link ‘tetrathiafulvalene–aluminum(III) porphyrin–gold(III) porphyrin’ reaction center mimics, Phys. Chem. Chem. Phys., 2015, 17, 26346–26358.

    Article  CAS  Google Scholar 

  28. C. B. KC and F. D’Souza, Design and photochemical study of supramolecular donor–acceptor systems assembled via metal–ligand axial coordination, Coord. Chem. Rev., 2016, 322, 104–141.

    Article  CAS  Google Scholar 

  29. M. M. Safont-Sempere, G. Fernandez and F. Würthner, Self-sorting phenomena in complex supramolecular systems, Chem. Rev., 2011, 111, 5784–5814.

    Article  CAS  Google Scholar 

  30. Supramolecular Chemistry, ed. J. W. Steed and J. L. Atwood, John Wiley & Sons, Ltd, 2nd edn, 2009.

    Google Scholar 

  31. J. S. Sessler, B. Wang, S. L. Spring and C. T. Brown, in Comprehensive Supramolecular Chemistry, ed. J. L. Atwood, J. E. D. Davies, D. D. MacNicol and F. Vogtle, Pergamon, New York, 1996, ch 9.

  32. T. Shimidzu, H. Segawa, T. Lyoda and K. Honda, Photoredox and electrochemical reactions of water-soluble gold porphyrins, J. Chem. Soc., Faraday Trans. 2, 1987, 83, 2191–2200.

    Article  CAS  Google Scholar 

  33. A. Takai, C. P. Gros, J.-M. Barbe and S. Fukuzumi, Photodynamics in stable complexes composed of a zinc porphyrin tripod and pyridyl porphyrins assembled by multiple coordination bonds, Phys. Chem. Chem. Phys., 2010, 12, 12160–12168.

    Article  CAS  Google Scholar 

  34. F. D’Souza, S. Gadde, M. E. Zandler, K. Arkady, M. E. El-Khouly, M. Fujitsuka and O. Ito, Studies on covalently linked porphyrin-C60 dyads: stabilization of charge-separated states by axial coordination, J. Phys. Chem. A, 2002, 106, 12393–12404.

    Article  Google Scholar 

  35. M. E. El-Khouly, L. M. Rogers, M. E. Zandler, G. Suresh and M. E. Zandler, M. Fujitsuka and O. Ito, Studies on intrasupramolecular and intermolecular electron-transfer processes between zinc naphthalocyanine and imidazole-appended fullerene, ChemPhysChem, 2003, 4, 474–481.

    Article  CAS  Google Scholar 

  36. Handbook of Photochemistry, ed. S. I. Murov, I. Carmichael and G. L. Hug, Marcel Dekker, New York, 2nd edn, 1993.

    Google Scholar 

  37. K. M. Kadish, W. E. Z. Ou, J. Shao, P. J. Sintic, K. Ohkubo, S. Fukuzumi and M. J. Crossley, Evidence that gold(III) porphyrins are not electrochemically inert: facile generation of gold(II) 5,10,15,20-tetrakis(3,5-di-tert-butylphenyl)porphyrin, Chem. Commun., 2002, 356–357.

    Google Scholar 

  38. The driving forces for charge recombination (−ΔGCR) and charge separation (−ΔGCS) were calculated according to the equations, −ΔGCR = EoxEred and −ΔGCS = E0,0 − (−ΔGCR); where Eox is the first oxidation potential of ZnPc, Ered is the first reduction potential of the AuPpy, ΔE0,0 is the energy of the 0–0 transition between the lowest excited state and the ground state of ZnPc and AuPpy as evaluated from the fluorescence peak.

  39. T. Nojiri, M. M. Alam, H. Konami, A. Watanabe and O. Ito, Photoinduced electron transfer from phthalocyanines to fullerenes (C60/C70), J. Phys. Chem. A, 1997, 101, 7943–7947.

    Article  CAS  Google Scholar 

  40. M. E. El-Khouly, S. D.-M. Islam, M. Fujitsuka and O. Ito, Photoinduced electron transfer from triplet states of phthalocyanines to fullerenes studied by transient absorption spectroscopies in visible and near-IR regions, J. Porphyrins Phthalocyanines, 2000, 4, 713–721.

    Article  CAS  Google Scholar 

  41. Y. Rio, W. Seitz, A. Gouloumis, P. Vazquez, J. L. Sessler, D. M. Guldi and T. Torres, A panchromatic supramolecular fullerene-based donor–acceptor assembly derived from a peripherally substituted bodipy–zinc phthalocyanine dyad, Chem.–Eur. J., 2010, 16, 1929–1940.

    Article  CAS  Google Scholar 

  42. M. E. El-Khouly and S. Fukuzumi, Light harvesting phthalocyanine/subphthalocyanine system: intermolecular electron-transfer and energy-transfer reactions via the triplet subphthalocyanine, J. Porphyrins Phthalocyanines, 2011, 15, 111–117.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed E. El-Khouly.

Additional information

Electronic supplementary information (ESI) available: Abs spectra in benzonitrile, nanosecond transient spectra of ZnPc. See DOI: 10.1039/c6pp00228e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Khouly, M.E., Fukuzumi, S. Light harvesting a gold porphyrin—zinc phthalocyanine supramolecular donor—acceptor dyad. Photochem Photobiol Sci 15, 1340–1346 (2016). https://doi.org/10.1039/c6pp00228e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00228e

Navigation