Skip to main content
Log in

Photocatalytic degradation of ibuprofen using TiO2 sensitized by Ru(II) polyaza complexes

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In this work, modification of TiO2 was carried out by incorporation of two novel Ru(II) polyaza complexes. The N1-(2-aminobenzyliden)-N2,N2-bis(2-(2-aminobenzyliden)aminoethyl)ethane-1,2-diaminoruthenium(II) and N1,N2-bis(2-aminobenziliden)ethane-1,2-diaminoruthenium(II) complexes were synthesized via metal–ligand direct reaction. The complexes were characterized by UV-Vis, FTIR and fluorescence spectroscopy, and the chemical composition was obtained from elemental analysis by the combustion method; additionally, the sensitized TiO2 catalysts were also characterized by XRD, SEM and diffuse reflectance techniques. The photocatalytic activity of the prepared catalysts was tested in a batch reactor under visible radiation for the degradation of ibuprofen in aqueous solution. The evolution of the drug degradation process was evaluated by high-performance liquid chromatography (HPLC), while the mineralization percentage was monitored by the determination of total organic carbon (TOC). The results indicated that the incorporation of these complexes improves the activation of TiO2 under visible light, increasing the degradation and mineralization percentage of ibuprofen up to 35% compared to the unmodified material, thereby making it suitable for application in heterogeneous photocatalysis of the said pharmaceutical in aqueous media using visible light as the energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. De la Cruz, R. F. Dantas, J. Giménez and S. Esplugas, Photolysis and TiO2 photocatalysis of the pharmaceutical propranolol: Solar and artificial light, Appl. Catal., B, 2013, 130-131, 249–256.

    Article  CAS  Google Scholar 

  2. A. L. Giraldo, et al. Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension, Water Res., 2010, 12, 5158–5167.

    Article  CAS  Google Scholar 

  3. F. Méndez-Arriaga, S. Esplugas and J. Giménez, Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation, Water Res., 2008, 12, 585–594.

    Article  CAS  Google Scholar 

  4. D. Li, H. Haneda, S. Hishita and N. Ohashi, Visible-light-driven nitrogen-doped TiO2 photocatalysts: Effect of nitrogen precursors on their photocatalysis for decomposition of gas-phase organic pollutants, Mater. Sci. Eng., B, 2005, 12, 67–75.

    Article  CAS  Google Scholar 

  5. E. S. Elmolla and M. Chaudhuri, Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis, Desalination, 2010, 12, 46–52.

    Article  CAS  Google Scholar 

  6. S. Nakade, et al. lnfluence of TiO2 Nanoparticle Size on Electron Diffusion and Recombination in Dye-Sensitized TiO2 Solar Cells, J. Phys. Chem. B, 2003, 12, 8607–8611.

    Article  CAS  Google Scholar 

  7. A. Fujishima, X. Zhang and D. A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 2008, 12, 515–582.

    Article  CAS  Google Scholar 

  8. C. Belver, R. Bellod, A. Fuerte and M. Fernandez-Garcia, Nitrogen-containing TiO2 photocatalysts. Part 1. Synthesis and solid characterization, Appl. Catal., B, 2006, 65, 301–308.

    Article  CAS  Google Scholar 

  9. H. Park, Y. Park, W. Kim and W. Choi, Surface modification of TiO2 photocatalyst for environmental applications, J. Photochem. Photobiol., C, 2013, 12, 1–20.

    Article  CAS  Google Scholar 

  10. M. A. Henderson, A surface science perspective on TiO2 photocatalysis, Surf. Sci. Rep., 2011, 12, 185–297.

    Article  CAS  Google Scholar 

  11. C. Di Valentin, et al. N-doped TiO2: Theory and experiment, Chem. Phys., 2007, 12, 44–56.

    Article  CAS  Google Scholar 

  12. P. Kar, et al. Sensitization of nanocrystalline TiO2 anchored with pendant catechol functionality using a new tetracyanato ruthenium(II) polypyridyl complex, lnorg. Chem., 2010, 49, 4167–4174.

    Article  CAS  Google Scholar 

  13. J. Warnan, et al. Ruthenium sensitizer functionalized by acetylacetone anchoring groups for dye-sensitized solar cells, J. Phys. Chem. C, 2013, 12, 8652–8660.

    Article  CAS  Google Scholar 

  14. N. Onozawa-Komatsuzaki, et al. Near-IR sensitization of nanocrystalline TiO2 with a new ruthenium complex having a 2, 6-bis(4-carboxyquinolin-2-yI)pyridine ligand, lnorg. Chem. Commun., 2009, 12, 1212–1215.

    Article  CAS  Google Scholar 

  15. T. Funaki, et al. Ruthenium (II) complexes with expanded Iigand having phenylene-ethynylene moiety as sensitizers for dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells, 2009, 12, 729–732.

    Article  CAS  Google Scholar 

  16. S. Fan, C. Kim, B. Fang and K. Liao, lmproved efficiency of over 10% in dye-sensitized solar cells with a ruthenium complex and an organic dye heterogeneously positioning on a single TiO2 electrode, J. Phys. Chem. C, 2011, 7747–7754.

    Google Scholar 

  17. W. Kaim, Concepts for metal complex chromophores absorbing in the near infrared, Coord. Chem. Rev., 2011, 12, 2503–2513.

    Article  CAS  Google Scholar 

  18. P. Giokas and S. Miller, Spectroscopy and Dynamics of Phosphonate-Derivatized Ruthenium Complexes on TiO2, J. Phys. Chem. C, 2013, 12, 812–824.

    Article  CAS  Google Scholar 

  19. L. Feng, E. D. Van Hullebusch, M. A. Rodrigo, G. Esposito and M. A. Oturan, Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review, Chem. Eng. J., 2013, 12, 944–964.

    Article  CAS  Google Scholar 

  20. J. Kim, H. Jang and J. Kim, Occurrence of pharmaceutical and personal care products (PPCPs) in surface water from Mankyung River, South Korea, J. Health Sci., 2009, 12, 249–258.

    Article  Google Scholar 

  21. R. Reif, S. Suarez, F. Omil and J. M. Lema, Fate of pharmaceuticals and cosmetic ingredients during the operation of a MBR treating sewage, Desalination, 2008, 12, 511–517.

    Article  CAS  Google Scholar 

  22. S. Ortiz de Garcia, G. Pinto Pinto, P. Garcia Encina and R. Irusta Mata, Consumption and occurrence of pharmaceutical and personal care products in the aquatic environment in Spain, Sci. Total Environ., 2013, 12, 451–465.

    Article  CAS  Google Scholar 

  23. W.-J. Sim, et al. Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures, Chemosphere, 2011, 82, 179–186.

    Article  CAS  PubMed  Google Scholar 

  24. J. Rivera-Utrilla, M. Sanchez-Polo, M. A. Ferro-Garcia, G. Prados-Joya and R. Ocampo-Pérez, Pharmaceuticals as emerging contaminants and their removal from water. A review, Chemosphere, 2013, 12, 1268–1287.

    Article  CAS  Google Scholar 

  25. J. B. EIIis, Pharmaceutical and personal care products (PPCPs) in urban receiving waters, Environ. Pollut., 2006, 12, 184–189.

    Google Scholar 

  26. O. A. Jones, J. N. Lester and N. Voulvoulis, Pharmaceuticals: A threat to drinking water?, Trends Biotechnol., 2005, 12, 163–167.

    Article  CAS  Google Scholar 

  27. T. E. FéIix-Canedo, J. C. Duran-Alvarez and B. Jiménez-Cisneros, The occurrence and distribution of a group of organic micropollutants in Mexico City’s water sources, Sci. Total Environ., 2013, 454-455, 109–118.

    Article  CAS  Google Scholar 

  28. J.-L. Liu and M.-H. Wong, Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China, Environ. Int., 2013, 12, 208–224.

    Article  CAS  Google Scholar 

  29. J. F. Gongora-Gomez, et al. Sensitization of TiO2 with novel Cu(II) and Ni(II) polyaza complexes: Evaluation of its photocatalytic activity, Ceram. Int., 2014, 12, 14207–14214.

    Article  CAS  Google Scholar 

  30. X.-H. Wei, et al. Two sensitizers of Tb(III) constructed from alkaline earth metals and semi-rigid tripodal Iigand, lnorg. Chim. Acta, 2014, 12, 207–214.

    Article  CAS  Google Scholar 

  31. T. Suresh, et al. Novel ruthenium sensitizer with multiple butadiene equivalent thienyls as conjugation on ancillary Iigand for dye-sensitized solar cells, Org. Electron., 2013, 12, 2243–2248.

    Article  CAS  Google Scholar 

  32. N. Bahadur, K. Jain, R. Pasricha, Govind and S. Chand, Selective gas sensing response from different Ioading of Ag in soI-gel mesoporous titania powders, Sens. Actuators, B, 2011, 12, 112–120.

    Article  CAS  Google Scholar 

  33. M. A. Behnajady and H. Eskandarloo, Silver and copper coimpregnated onto TiO2-P25 nanoparticles and its photocatalytic activity, Chem. Eng.J., 2013, 12, 1207–1213.

    Article  CAS  Google Scholar 

  34. A. Kruth, A. Quade, V. Brüser and K. Weltmann, PIasma-Enhanced Synthesis of Poly (allylamine)-Encapsulated Ruthenium Dye-Sensitized Titania Photocatalysts, J. Phys. Chem. C, 2013, 12, 3804–3811.

    Article  CAS  Google Scholar 

  35. C. Martinez, L. M. Canle, M. I. Fernandez, J. A. Santaballa and J. Faria, Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials, Appl. Catal., B, 2011, 12, 110–118.

    Article  CAS  Google Scholar 

  36. T. Morikawa, R. Asahi, T. Ohwaki, K. Aoki and Y. Taga, Band-gap narrowing of titanium dioxide by nitrogen doping, Jpn. J. Appl. Phys., Part 2, 2001, 40, L561–L563.

    Article  CAS  Google Scholar 

  37. A. V. Emeline, V. N. Kuznetsov, V. K. Rybchuk and N. Serpone, Visible-Light-Active Titania Photocatalysts: The Case of N-Doped TiO2—Properties and Some Fundamental Issues, lnt. J. Photoenergy, 2008, 12, 1–19.

    Google Scholar 

  38. D. G. Brown, P. A. Schauer, J. Borau-Garcia, B. R. Fancy and C. P. Berlinguette, Stabilization of ruthenium sensitizers to TiO2 surfaces through cooperative anchoring groups, J. Am. Chem. Soc., 2013, 12, 1692–1695.

    Article  CAS  Google Scholar 

  39. S. Banerjee, et al. New Insights into the Mechanism of Visible Light Photocatalysis, J. Phys. Chem. Lett., 2014, 12, 2543–2554.

    Article  CAS  Google Scholar 

  40. K. Suttiponparnit, et al. Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties, Nanoscale Res. Lett., 2011, 12, 1–8.

    Google Scholar 

  41. Y. Fu and W. Cao, The effect of potential on the electrontrapping process of surface states in nanocrystalline TiO2 film electrode, J. Appl. Phys., 2006, 12, 084324.

    Article  CAS  Google Scholar 

  42. M. Buchalska, et al. On Oxygen Activation at Rutile- and Anatase-TiO2, ACS Catal., 2015, 12, 7424–7431.

    Article  CAS  Google Scholar 

  43. A. Imanishi, T. Okamura, N. Ohashi, R. Nakamura and Y. Nakato, Mechanism of water photooxidation reaction at atomically flat TiO2 (rutile) (110) and (100) surfaces: Dependence on solution pH, J. Am. Chem. Soc., 2007, 12, 11569–11578.

    Article  CAS  Google Scholar 

  44. A. Tsujiko, et al. Observation of cathodic photocurrents at nanocrystalline TiO2 film electrodes, caused by enhanced oxygen reduction in alkaline solutions, J. Phys. Chem. B, 2002, 12, 5878–5885.

    Article  CAS  Google Scholar 

  45. T. Loftsson and M. E. Brewster, Pharmaceutical applications of cyclodextrins: Drug solubilisation and stabilization, J. Pharm. Sci., 1996, 12, 1017–1025.

    Article  Google Scholar 

  46. I. Vergili, Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources, J. Environ. Manage., 2013, 12, 177–187.

    Article  CAS  Google Scholar 

  47. F. Méndez-Arriaga, M. I. Maldonado, J. Gimenez, S. Esplugas and S. Malato, Abatement of ibuprofen by solar photocatalysis process: Enhancement and scale up, Catal. Today, 2009, 12, 112–116.

    Article  CAS  Google Scholar 

  48. R. Baccar, M. Sarr, J. Bouzid, M. Feki and P. Blanquez, Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product, Chem. Eng. J., 2012, 211-212, 310–317.

    Google Scholar 

  49. E. Illés, et al. Hydroxyl radical induced degradation of ibuprofen, Sci. Total Environ., 2013, 12, 286–292.

    Article  CAS  Google Scholar 

  50. D. Dimitrakopoulou, et al. Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis, J. Environ. Manage., 2012, 12, 168–174.

    Article  CAS  Google Scholar 

  51. Z. Khuzwayo and E. M. N. Chirwa, Modelling and simulation of photocatalytic oxidation mechanism of chlorohalogenated substituted phenols in batch systems: Langmuir-Hinshelwood approach, J. Hazard. Mater., 2015, 12, 459–466.

    Article  CAS  Google Scholar 

  52. D. WANG, Experimental Conditions for Valid Langmuir-Hinshelwood Kinetics, Chin. J. Catal., 2010, 31, 972–978.

    Article  CAS  Google Scholar 

  53. M. L. Maya-Trevino, M. Villanueva-Rodriguez, J. L. Guzman-Mar, L. Hinojosa-Reyes and A. Hernandez-Ramirez, Comparison of the solar photocatalytic activity of ZnO-Fe2O3 and ZnO-Fe(0) on 2, 4-D degradation in a CPC reactor, Photochem. Photobiol. Sci., 2015, 14, 543–549.

    Article  CAS  PubMed  Google Scholar 

  54. F. Méndez-Arriaga, S. Esplugas and J. Giménez, Degradation of the emerging contaminant ibuprofen in water by photo-Fenton, Water Res.., 2010, 44, 589–595.

    Article  PubMed  CAS  Google Scholar 

  55. S. Malato, P. Fernandez-Ibanez, M. I. Maldonado, J. Blanco and W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends, Catal. Today, 2009, 12, 1–59.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Elizondo.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c6pp00222f

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Góngora, J.F., Elizondo, P. & Hernández-Ramírez, A. Photocatalytic degradation of ibuprofen using TiO2 sensitized by Ru(II) polyaza complexes. Photochem Photobiol Sci 16, 31–37 (2017). https://doi.org/10.1039/c6pp00222f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00222f

Navigation