Skip to main content
Log in

A near-infrared fluorescent probe based on chloroacetate modified naphthofluorescein for selectively detecting cysteine/homocysteine and its application in living cells

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We have prepared a near-infrared (NIR) turn-on fluorescent probe (NFC) based on chloroacetate modified naphthofluorescein for specific detection of cysteine (Cys) and homocysteine (Hcy) over glutathione (GSH) and other amino acids (AAs) with the detection limits of 0.30 μM and 0.42 μM, respectively. The fluorescence intensity of the naphthofluorescein (NF) chromophore is modulated by an internal charge transfer (ICT) process. The probe NFC is readily available and weakly fluorescent, but of observably enhanced fluorescence after reacting with Cys or Hcy. We assumed and then demonstrated that the fluorescence off—on process involves a conjugate nucleophilic substitution/cyclization sequence. Furthermore, the probe has been successfully applied for detecting the total content of Cys and Hcy in human plasma and imaging in living cells with low toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. S. Zhang, C. N. Ong and H. M. Shen, Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells, Cancer Lett., 2004, 208, 143–153.

    Article  CAS  PubMed  Google Scholar 

  2. W. Lin, L. Yuan, Z. Cao, Y. Feng and L. Long, A sensitive and selective fluorescent thiol probe in water based on the conjugate 1,4-addition of thiols to α,β-unsaturated ketones, Chem.–Eur. J., 2009, 15, 5096–5103.

    Article  CAS  PubMed  Google Scholar 

  3. X. Yang, Y. Guo and R. M. Strongin, A seminaphthofluorescein-based fluorescent chemodosimeter for the highly selective detection of cysteine, Org. Biomol. Chem., 2012, 10, 2739–2741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. L. Duan, Y. Xu, X. Qian, F. Wang, J. Liu and T. Cheng, Highly selective fluorescent chemosensor with red shift for cysteine in buffer solution and its bioimage: symmetrical naphthalimide aldehyde, Tetrahedron Lett., 2008, 49, 6624–6627.

    Article  CAS  Google Scholar 

  5. W. Wang, O. Rusin, X. Xu, K. K. Kim, J. O. Escobedo, S. O. Fakayode, K. A. Fletcher, M. Lowry, C. M. Schowalter, C. M. Lawrence, F. R. Fronczek, I. M. Warner and R. M. Strongin, Detection of homocysteine and cysteine, J. Am. Chem. Soc., 2005, 127, 15949–15958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. C. Y. Kim, H. J. Kang, S. J. Chung, H. K. Kim, S. Y. Na and H. J. Kim, Mitochondria-targeting chromogenic and fluorescence turn-on probe for the selective detection of cysteine by caged oxazolidinoindocyanine, Anal. Chem., 2016, 88, 7178–7182.

    Article  CAS  PubMed  Google Scholar 

  7. W. Lin, L. Long, L. Yuan, Z. Cao, B. Chen and W. Tan, A ratiometric fluorescent probe for cysteine and homocysteine displaying a large emission shift, Org. Lett., 2008, 10, 5577–5580.

    Article  CAS  PubMed  Google Scholar 

  8. O. Rusin, N. N. S. Luce, R. A. Agbaria, J. O. Escobedo, S. Jiang, I. M. Warner, F. B. Dawan, K. Lian and R. M. Strongin, Visual detection of cysteine and homocysteine, J. Am. Chem. Soc., 2004, 126, 438–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. X. Yang, Y. Guo and R. M. Strongin, Conjugate addition/cyclization sequence enables selective and simultaneous fluorescence detection of cysteine and homocysteine, Angew. Chem., Int. Ed., 2011, 50, 10690–10693.

    Article  CAS  Google Scholar 

  10. R. T. K. Kwok, C. W. T. Leung, J. W. Y. Lam and B. Z. Tang, Biosensing by luminogens with aggregation-induced emission characteristics, Chem. Soc. Rev., 2015, 44, 4228–4238.

    Article  CAS  PubMed  Google Scholar 

  11. Z. Lou, P. Li and K. Han, Redox-responsive fluorescent probes with different design strategies, Acc. Chem. Res., 2015, 48, 1358–1368.

    Article  CAS  PubMed  Google Scholar 

  12. J. Yin, Y. Hu and J. Yoon, Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH, Chem. Soc. Rev., 2015, 44, 4619–4644.

    Article  CAS  PubMed  Google Scholar 

  13. X. Zhou, S. Lee, Z. Xu and J. Yoon, Recent progress on the development of chemosensors for gases, Chem. Rev., 2015, 115, 7944–8000.

    Article  CAS  PubMed  Google Scholar 

  14. H. Zhu, J. Fan, B. Wang and X. Peng, Fluorescent, MRI, and colorimetric chemical sensors for the first-row d-block metal ions, Chem. Soc. Rev., 2015, 44, 4337–4366.

    Article  CAS  PubMed  Google Scholar 

  15. X. Zhang, X. Ren, Q. Xu, K. P. Loh and Z. Chen, One-and two-photon turn-on fluorescent probe for cysteine and homocysteine with large emission shift, Org. Lett., 2009, 11, 1257–1260.

    Article  CAS  PubMed  Google Scholar 

  16. T.-K. Kim, D.-N. Lee and H.-J. Kim, Highly selective fluorescent sensor for homocysteine and cysteine, Tetrahedron Lett., 2008, 49, 4879–4881.

    Article  CAS  Google Scholar 

  17. K.-S. Lee, T.-K. Kim, J. H. Lee, H.-J. Kim and J.-I. Hong, Fluorescence turn-on probe for homocysteine and cysteine in water, Chem. Commun., 2008, 46, 6173–6175.

    Article  CAS  Google Scholar 

  18. G. Liang, H. Ren and J. Rao, A biocompatible condensation reaction for controlled assembly of nanostructures in living cells, Nat. Chem., 2010, 2, 54–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S. Lim, J. O. Escobedo, M. Lowry, X. Xu and R. Strongin, Selective fluorescence detection of cysteine and N-terminal cysteine peptide residues, Chem. Commun., 2010, 46, 5707–5709.

    Article  CAS  Google Scholar 

  20. H. Ren, F. Xiao, K. Zhan, Y. P. Kim, H. Xie, Z. Xia and J. Rao, A biocompatible condensation reaction for the labeling of terminal cysteine residues on proteins, Angew. Chem., Int. Ed., 2009, 48, 9658–9662.

    Article  CAS  Google Scholar 

  21. F. Tanaka, N. Mase and C. F. Barbas III, Determination of cysteine concentration by fluorescence increase: reaction of cysteine with a fluorogenic aldehyde, Chem. Commun., 2004, 15, 1762–1763.

    Article  CAS  Google Scholar 

  22. Z. Yao, H. Bai, C. Li and G. Shi, Colorimetric and fluorescent dual probe based on a polythiophene derivative for the detection of cysteine and homocysteine, Chem. Commun., 2011, 47, 7431–7433.

    Article  CAS  Google Scholar 

  23. M. Zhang, M. Li, Q. Zhao, F. Li, D. Zhang, J. Zhang, T. Yi and C. Huang, Novel Y-type two-photon active fluorophore: synthesis and application in fluorescent sensor for cysteine and homocysteine, Tetrahedron Lett., 2007, 48, 2329–2333.

    Article  CAS  Google Scholar 

  24. B. Zhu, Y. Zhao, Q. Zhou, B. Zhang, L. Liu, B. Du and X. Zhang, A chloroacetate-caged fluorescein chemodosimeter for imaging cysteine/homocysteine in living cells, Eur. J. Org. Chem., 2013, 888–893.

    Google Scholar 

  25. Y. Kim, M. Choi, S. Seo, S. T. Manjare, S. Jon and D. G. Churchill, A selective fluorescent probe for cysteine and its imaging in live cells, RSC Adv., 2014, 4, 64183–64186.

    Article  CAS  Google Scholar 

  26. D. P. Murale, H. Kim, W. S. Choi, D. G. Churchill, Rapid and selective detection of Cys in living neuronal cells utilizing a novel fluorescein with chloropropionate–ester functionalities, RSC Adv., 2014, 4, 5289–5292.

    Article  CAS  Google Scholar 

  27. K.-H. Hong, S.-Y. Lim, M.-Y. Yun, J.-W. Lim, J.-H. Woo, H. Kwon and H.-J. Kim, Selective detection of cysteine over homocysteine and glutathione by a bis (bromoacetyl) fluorescein probe, Tetrahedron Lett., 2013, 54, 3003–3006.

    Article  CAS  Google Scholar 

  28. H. Lee, D. I. Kim, H. Kwon and H.-J. Kim, Bromoacetylfluorescein monoaldehyde as a fluorescence turn-on probe for cysteine over homocysteine and glutathione, Sens. Actuators, B, 2015, 209, 652–657.

    Article  CAS  Google Scholar 

  29. L. Yuan, W. Lin, S. Zhao, W. Gao, B. Chen, L. He and S. Zhu, A unique approach to development of near-infrared fluorescent sensors for in vivo imaging, J. Am. Chem. Soc., 2012, 134, 13510–13523.

    Article  CAS  PubMed  Google Scholar 

  30. F. Yu, P. Li, P. Song, B. Wang, J. Zhao and K. Han, Facilitative functionalization of cyanine dye by an on–off–on fluorescent switch for imaging of H2O2 oxidative stress and thiols reducing repair in cells and tissues, Chem. Commun., 2012, 48, 4980–4982.

    Article  CAS  Google Scholar 

  31. F. Yu, X. Han and L. Chen, Fluorescent probes for hydrogen sulfide detection and bioimaging, Chem. Commun., 2014, 50, 12234–12249.

    Article  CAS  Google Scholar 

  32. J. O. Escobedo, O. Rusin, S. Lim and R. M. Strongin, NIR dyes for bioimaging applications, Curr. Opin. Chem. Biol., 2010, 14, 64–70.

    Article  CAS  PubMed  Google Scholar 

  33. C. Yin, F. Huo, J. Zhang, R. Martinez-Manez, Y. Yang, H. Lv and S. Li, Thiol-addition reactions and their applications in thiol recognition, Chem. Soc. Rev., 2013, 42, 6032–6059.

    Article  CAS  PubMed  Google Scholar 

  34. H. Peng, W. Chen, Y. Cheng, L. Hakuna, R. Strongin and B. Wang, Thiol reactive probes and chemosensors, Sensors, 2012, 12, 15907–15946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Y.-S. Guan, L.-Y. Niu, Y.-Z. Chen, L.-Z. Wu, C.-H. Tung and Q.-Z. Yang, A near-infrared fluorescent sensor for selective detection of cysteine and its application in live cell imaging, RSC Adv., 2014, 4, 8360–8364.

    Article  CAS  Google Scholar 

  36. L. Yuan, W. Lin, K. Zheng, L. He and W. Huang, Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging, Chem. Soc. Rev., 2013, 42, 622–661.

    Article  CAS  PubMed  Google Scholar 

  37. J. Wang, F. Song, J. Wang and X. Peng, A near-infrared and ratiometric fluorescent chemosensor for palladium, Analyst, 2013, 138, 3667–3672.

    Article  CAS  PubMed  Google Scholar 

  38. O. S. Wolfbeis, N. V. Rodriguez and T. Werner, LED-compatible fluorosensor for measurement of near-neutral pH values, Microchim. Acta, 1992, 108, 133–141.

    Article  CAS  Google Scholar 

  39. K. Xu, X. Liu and B. Tang, A phosphinate-based red fluorescent probe for imaging the superoxide radical anion generated by RAW264. 7 macrophages, ChemBioChem, 2007, 8, 453–458.

    Article  CAS  PubMed  Google Scholar 

  40. A. E. Albers, B. C. Dickinson, E. W. Miller and C. J. Chang, A red-emitting naphthofluorescein-based fluorescent probe for selective detection of hydrogen peroxide in living cells, Bioorg. Med. Chem. Lett., 2008, 18, 5948–5950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. S. Xue, S. Ding, Q. Zhai, H. Zhang and G. Feng, A readily available colorimetric and near-infrared fluorescent turn-on probe for rapid and selective detection of cysteine in living cells, Biosens. Bioelectron., 2015, 68, 316–321.

    Article  CAS  PubMed  Google Scholar 

  42. C. Wei, Q. Zhu, W. Liu, W. Chen, Z. Xi and L. Yi, NBD-based colorimetric and fluorescent turn-on probes for hydrogen sulfide, Org. Biomol. Chem., 2014, 12, 479–485.

    Article  CAS  PubMed  Google Scholar 

  43. K. Xu, B. Tang, H. Huang, G. Yang, Z. Chen, P. Li and L. An, Strong red fluorescent probes suitable for detecting hydrogen peroxide generated by mice peritoneal macrophages, Chem. Commun., 2005, 48, 5974–5976.

    Article  CAS  Google Scholar 

  44. H. Guo, Y. Jing, X. Yuan, S. Ji, J. Zhao, X. Li and Y. Kan, Highly selective fluorescent OFF–ON thiol probes based on dyads of BODIPY and potent intramolecular electron sink 2, 4-dinitrobenzenesulfonyl subunits, Org. Biomol. Chem., 2011, 9, 3844–3853.

    Article  CAS  PubMed  Google Scholar 

  45. D. W. Jacobsen, V. J. Gatautis, R. Green, K. Robinson, S. R. Savon, M. Secic, J. Ji, J. M. Otto and L. M. Taylor, Rapid HPLC determination of total homocysteine and other thiols in serum and plasma: sex differences and correlation with cobalamin and folate concentrations in healthy subjects, Clin. Chem., 1994, 40, 873–881.

    Article  CAS  PubMed  Google Scholar 

  46. T. D. Nolin, M. E. McMenamin and J. Himmelfarb, Simultaneous determination of total homocysteine, cysteine, cysteinylglycine, and glutathione in human plasma by high-performance liquid chromatography: Application to studies of oxidative stress, J. Chromatogr., B: Biomed. Appl., 2007, 852, 554–561.

    Article  CAS  Google Scholar 

  47. O. Nygård, S. E. Vollset, H. Refsum, I. Stensvold, A. Tverdal, J. E. Nordrehaug, P. M. Ueland and G. Kvåle, Total plasma homocysteine and cardiovascular risk profile: the Hordaland Homocysteine Study, J. Am. Med. Assoc., 1995, 274, 1526–1533.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixia Zhang.

Additional information

Electronic supplementary information (ESI) available: Detailed procedures, characterization data and additional plots. See DOI: 10.1039/c6pp00219f

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhou, C., Liu, W. et al. A near-infrared fluorescent probe based on chloroacetate modified naphthofluorescein for selectively detecting cysteine/homocysteine and its application in living cells. Photochem Photobiol Sci 15, 1393–1399 (2016). https://doi.org/10.1039/c6pp00219f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00219f

Navigation