Skip to main content
Log in

Comparison of benzene and toluene photodegradation under visible light irradiation by Ba-doped BiFeO3 magnetic nanoparticles with fast sonochemical synthesis

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Bi−1BaxFeO3 (x = 0.02, 0.04 and 0.07) multiferroic materials with a diameter in the range of 30–40 nm were controllably synthesized by a facile ultrasonic method, with a very short reaction time of 5 min at a low temperature of 30 °C, and the resulting BiFeO3 magnetic nanoparticles (BFO MNPs) exhibited enhanced magnetic and photocatalytic performance. The substitution of Ba2+ ions for Bi3+ ions at the A-site of BFO MNPs, even at only 2%, decreased their particle size and distorted the lattice in the rhombohedral structure of BFO MNPs. Increasing the Ba doping to 7% greatly increased the ferromagnetic properties of BFO MNPs from 3.55 to 6.09 emu g−1. In comparison with pure BFO MNPs, 7% Ba substitution in the Ba-doped BFO MNP samples produced strong absorption in the visible light region, decreasing the band-gap energy from 2.11 to 1.86 eV. Photoluminescence (PL) spectroscopy identified the band-gap emission for BFO MNPs at 587 nm, while for both pure and Ba-doped samples, the other emissions were attributed to the defect states related to oxygen deficiencies inside the band gap. After 50 min of visible light irradiation, Bi−1BaxFeO3 (x = 7%), with the lowest band gap energy, highest magnetization and smallest particle size, showed almost complete photocatalytic degradation of toluene and benzene (100 mg L−1), with 91 and 81% reduction, respectively, in total organic carbon (TOC). For all irradiation times, the mineralization efficiency of toluene was higher than that of benzene, which demonstrated that toluene is more sensitive to photocatalytic oxidation than is benzene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Z. Streicher, P. A. Gabow, A. H. Moss, D. Kono and W. D. Kaehny, Ann. Intern. Med., 1981, 12, 758–762.

    Article  Google Scholar 

  2. L. Tang, Y. Li, K. Xu, X. Hou and Y. Lv, Sens. Actuators, B, 2008, 12, 243–249.

    Article  CAS  Google Scholar 

  3. M. Takeuchi, M. Hidaka and M. Anpo, J. Hazard. Mater., 2012, 237-238, 133–139.

    Article  CAS  PubMed  Google Scholar 

  4. S. V. Satyanarayana, A. Sharma and P. K. Bhattacharya, Chem. Eng. J., 2004, 12, 171–184.

    Article  CAS  Google Scholar 

  5. F. Lipnizki, R. W. Field and P.-K. Ten, J. Membr. Sci., 1999, 12, 183–210.

    Article  Google Scholar 

  6. A. Buschini, P. Carboni, S. Frigerio, M. Furlini, L. Marabini, S. Monarca, P. Poli, S. Radice and C. Rossi, Mutagenesis, 2004, 12, 341–347.

    Article  Google Scholar 

  7. J.-H. Yun, K.-Y. Hwang and D.-K. Choi, J. Chem. Eng. Data, 1998, 12, 843–845.

    Article  Google Scholar 

  8. K. Everaert and J. Baeyens, J. Hazard. Mater., 2004, 12, 113–139.

    Article  CAS  Google Scholar 

  9. M. A. Alvarez-Merino, M. F. Ribeiro, J. M. Silva, F. Carrasco-Marin and F. J. Maldonado-Hodar, Environ. Sci. Technol., 2004, 12, 4664–4670.

    Article  CAS  Google Scholar 

  10. P. Papaefthimiou, T. Ioannides and X. E. Verykios, Appl. Catal., B, 1997, 12, 175–184.

    Article  Google Scholar 

  11. S. Karimi, I. M. Reaney, I. Levin and I. Sterianou, Appl. Phys. Lett., 2009, 12, 112903.

    Article  CAS  Google Scholar 

  12. T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh and S. S. Wong, Nano Lett., 2007, 12, 766–772.

    Article  CAS  Google Scholar 

  13. T. Soltani and M. H. Entezari, Chem. Eng. J., 2013, 12, 145–154.

    Article  CAS  Google Scholar 

  14. T. Soltani and M. H. Entezari, Chem. Eng. J., 2014, 12, 207–216.

    Article  CAS  Google Scholar 

  15. T. Soltani and M. H. Entezari, Ultrason. Sonochem., 2013, 12, 1245–1253.

    Article  CAS  Google Scholar 

  16. T. Soltani and M. H. Entezari, J. Mol. Catal. A: Chem., 2013, 12, 197–203.

    Article  CAS  Google Scholar 

  17. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig and R. Ramesh, Science, 2003, 299, 1719–1722.

    Article  CAS  PubMed  Google Scholar 

  18. X. Qi, J. Dho, R. Tomov, M. G. Blamire and J. L. MacManus-Driscoll, Appl. Phys. Lett., 2005, 12, 062903.

    Article  CAS  Google Scholar 

  19. S. Y. Yang, F. Zavaliche, L. Mohaddes-Ardabili, V. Vaithyanathan, D. G. Schlom, Y. J. Lee, Y. H. Chu, M. P. Cruz, Q. Zhan, T. Zhao and R. Ramesh, Appl. Phys. Lett., 2005, 12, 102903.

    Article  CAS  Google Scholar 

  20. S. Hemant and K. L. Yadav, J. Phys.: Condens. Matter, 2011, 12, 385901.

    Google Scholar 

  21. D. Lebeugle, D. Colson, A. Forget, M. Viret, A. M. Bataille and A. Gukasov, Phys. Rev. Lett., 2008, 12, 227602.

    Article  CAS  Google Scholar 

  22. T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh and S. S. Wong, Nano Lett., 2007, 12, 766–772.

    Article  CAS  Google Scholar 

  23. H. Uchida, R. Ueno, H. Funakubo and S. Koda, J. Appl. Phys., 2006, 12, 014106.

    Article  CAS  Google Scholar 

  24. B. Kyle, I. Takashi and T. Hitoshi, Jpn. J. Appl. Phys., 2007, 46, L93.

    Google Scholar 

  25. P. Kharel, S. Talebi, B. Ramachandran, A. Dixit, V. M. Naik, M. B. Sahana, C. Sudakar, R. Naik, M. S. R. Rao and G. Lawes, J. Phys.: Condens. Matter, 2009, 12, 036001.

    Google Scholar 

  26. A. Kazutomo, S. Noriyoshi, T. Junichi, I. Hidenobu, A. Nobuyasu and O. Toshitaka, Jpn. J. Appl. Phys., 2010, 49, 09MB01.

    Google Scholar 

  27. Z. Zhang, H. Liu, Y. Lin, Y. Wei, C.-W. Nan and X. Deng, J. Nanomater., 2012, 12, 5.

    Google Scholar 

  28. Y.-N. Feng, H.-C. Wang, Y.-D. Luo, Y. Shen and Y.-H. Lin, J. Appl. Phys., 2013, 12, 146101.

    Article  CAS  Google Scholar 

  29. M. M. Shirolkar, C. Hao, X. Dong, T. Guo, L. Zhang, M. Li and H. Wang, Nanoscale, 2014, 12, 4735–4744.

    Article  Google Scholar 

  30. H. Yang, J. Seidel, S. Y. Kim, P. B. Rossen, P. Yu, M. Gajek, Y. H. Chu, L. W. Martin, M. B. Holcomb, Q. He, P. Maksymovych, N. Balke, S. V. Kalinin, A. P. Baddorf, S. R. Basu, M. L. Scullin and R. Ramesh, Nat. Mater., 2009, 12, 485–493.

    Article  CAS  Google Scholar 

  31. V. A. Khomchenko, D. A. Kiselev, J. M. Vieira, A. L. Kholkin, M. A. Sa and Y. G. Pogorelov, Appl. Phys. Lett., 2007, 12, 242901.

    Article  CAS  Google Scholar 

  32. F. Kubel and H. Schmid, Acta Crystallogr., Sect. B: Struct. Sci., 1990, 12, 698–702.

    Article  Google Scholar 

  33. H. Zhang, W. Liu, P. Wu, X. Hai, M. Guo, X. Xi, J. Gao, X. Wang, F. Guo, X. Xu, C. Wang, G. Liu, W. Chu and S. Wang, Nanoscale, 2014, 12, 10831–10838.

    Article  CAS  Google Scholar 

  34. T. Soltani and B.-K. Lee, J. Hazard. Mater., 2016, 316, 122–133.

    Article  CAS  PubMed  Google Scholar 

  35. N. A. Dhas and K. S. Suslick, J. Am. Chem. Soc., 2005, 12, 2368–2369.

    Article  CAS  Google Scholar 

  36. L. Zhou, W. Wang, S. Liu, L. Zhang, H. Xu and W. Zhu, J. Mol. Catal. A: Chem., 2006, 12, 120–124.

    Article  CAS  Google Scholar 

  37. V. Safarifard and A. Morsali, Ultrason. Sonochem., 2012, 12, 823–829.

    Article  CAS  Google Scholar 

  38. H. Xu, B. W. Zeiger and K. S. Suslick, Chem. Soc. Rev., 2013, 12, 2555–2567.

    Article  Google Scholar 

  39. S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo and V. V. Moshchalkov, Nat. Nanotechnol., 2008, 12, 174–178.

    Article  CAS  Google Scholar 

  40. R. K. Mishra, K. P. Dillip, R. N. P. Choudhary and A. Banerjee, J. Phys.: Condens. Matter, 2008, 20, 045218.

    Google Scholar 

  41. V. S. Rao, C. N. R. Rao and J. R. Ferraro, Appl. Spectrosc., 1970, 12, 436–445.

    Article  Google Scholar 

  42. P. Chen, X. Xu, C. Koenigsmann, A. C. Santulli, S. S. Wong and J. L. Musfeldt, Nano Lett., 2010, 12, 4526–4532.

    Article  CAS  Google Scholar 

  43. B. Bhushan, Z. Wang, J. van Tol, N. S. Dalal, A. Basumallick, N. Y. Vasanthacharya, S. Kumar and D. Das, J. Am. Ceram. Soc., 2012, 12, 1985–1992.

    Article  CAS  Google Scholar 

  44. J. P. Perdew and Y. Wang, Phys. Rev. B: Condens. Matter, 1992, 12, 13244–13249.

    Article  Google Scholar 

  45. B. Bhushan, A. Basumallick, S. K. Bandopadhyay, N. Y. Vasanthacharya and D. Das, J. Phys. D: Appl. Phys., 2009, 12, 065004.

    Article  CAS  Google Scholar 

  46. J. Li, Y. Duan, H. He and D. Song, Crystal structure, J. Alloys Compd., 2001, 12, 259–264.

    Google Scholar 

  47. S. K. Singh, H. Ishiwara and K. Maruyama, Appl. Phys. Lett., 2006, 12, 262908.

    Article  CAS  Google Scholar 

  48. D. Kothari, V. R. Reddy, A. Gupta, V. Sathe, A. Banerjee, S. M. Gupta and A. M. Awasthi, Appl. Phys. Lett., 2007, 12, 202505.

    Article  CAS  Google Scholar 

  49. Y. Benfang, L. Meiya, L. Jun, G. Dongyun, P. Ling and Z. Xingzhong, J. Phys. D: Appl. Phys., 2008, 12, 065003.

    Google Scholar 

  50. X. Yu and X. An, Solid State Commun., 2009, 12, 711–714.

    Article  CAS  Google Scholar 

  51. A. R. Makhdoom, M. J. Akhtar, M. A. Rafiq and M. M. Hassan, Ceram. Int., 2012, 12, 3829–3834.

    Article  CAS  Google Scholar 

  52. A. Jaiswal, R. Das, K. Vivekanand, P. Mary Abraham, S. Adyanthaya and P. Poddar, J. Phys. Chem. C, 2010, 12, 2108–2115.

    Article  CAS  Google Scholar 

  53. A. W. Rodriguez, D. Woolf, A. P. McCauley, F. Capasso, J. D. Joannopoulos and S. G. Johnson, Phys. Rev. Lett., 2010, 12, 060401.

    Article  CAS  Google Scholar 

  54. X. Chen, H. Zhang, T. Wang, F. Wang and W. Shi, Phys. Status Solidi A, 2012, 12, 1456–1460.

    Article  CAS  Google Scholar 

  55. J. Zhang, M. Rutkowski, L. W. Martin, T. Conry, R. Ramesh, J. F. Ihlefeld, A. Melville, D. G. Schlom and L. J. Brillson, J. Vac. Sci. Technol., B, 2009, 12, 2012–2014.

    Article  CAS  Google Scholar 

  56. L. Jing, F. Yuan, H. Hou, B. Xin, W. Cai and H. Fu, Sci. China, Ser. B: Chem., 2005, 12, 25–30.

    Article  Google Scholar 

  57. M. Reda, S. Guy, R. Olivier, C. Dorothée and V. Michel, Appl. Phys. Express, 2012, 12, 035802.

    Google Scholar 

  58. M. O. Ramirez, M. Krishnamurthi, S. Denev, A. Kumar, S.-Y. Yang, Y.-H. Chu, E. Saiz, J. Seidel, A. P. Pyatakov, A. Bush, D. Viehland, J. Orenstein, R. Ramesh and V. Gopalan, Appl. Phys. Lett., 2008, 12, 022511.

    Article  CAS  Google Scholar 

  59. W. Wei, H. Xuan, L. Wang, Y. Zhang, K. Shen, D. Wang, T. Qiu and Q. Xu, Phys. B: Condens. Matter, 2012, 12, 2243–2246.

    Article  CAS  Google Scholar 

  60. M. Kumar and K. Yadav, Appl. Phys. Lett., 2007, 91, 242901-242901.

  61. A. Mukherjee, M. Banerjee, S. Basu, N. T. K. Thanh, L. A. W. Green and M. Pal, Phys. B, 2014, 12, 199–203.

    Article  CAS  Google Scholar 

  62. D. P. Dutta, O. D. Jayakumar, A. K. Tyagi, K. G. Girija, C. G. S. Pillai and G. Sharma, Nanoscale, 2010, 2, 1149–1154.

    Article  CAS  PubMed  Google Scholar 

  63. I. Sosnowska, T. P. Neumaier and E. Steichele, J. Phys. C: Solid State Phys., 1982, 12, 4835.

    Article  Google Scholar 

  64. M. Mahesh Kumar, S. Srinath, G. S. Kumar and S. V. Suryanarayana, J. Magn. Magn. Mater., 1998, 12, 203–212.

    Article  Google Scholar 

  65. G. Biasotto, A. Z. Simöes, C. Foschini, M. Zaghete, J. A. Varela and E. Longo, Mater. Res. Bull., 2011, 12, 2543–2547.

    Article  CAS  Google Scholar 

  66. M. M. El-Desoky, M. M. Mostafa, M. S. Ayoub and M. A. Ahmed, J. Mater. Sci: Mater. Electron., 2015, 26, 6793–6800.

    Google Scholar 

  67. D. H. Wang, W. C. Goh, M. Ning and C. K. Ong, Appl. Phys. Lett., 2006, 12, 212907.

    Google Scholar 

  68. L. Jianmin, C. Dengrong, S. Juyue, J. Dengren, Y. Shengwen and C. Jinrong, 2010 IEEE International Symposium on the Applications of Ferroelectrics (ISAF), 2010.

    Google Scholar 

  69. O. d’Hennezel and D. F. Ollis, J. Catal., 1997, 12, 118–126.

    Article  Google Scholar 

  70. O. d’Hennezel, P. Pichat and D. F. Ollis, J. Photochem. Photobiol., A, 1998, 118, 197–204.

    Article  Google Scholar 

  71. L. Zou, Y. Luo, M. Hooper and E. Hu, Chem. Eng. Process.: Process Intensif., 2006, 12, 959–964.

    Article  CAS  Google Scholar 

  72. M. L. Curri, R. Comparelli, P. D. Cozzoli, G. Mascolo and A. Agostiano, Mater. Sci. Eng., C, 2003, 12, 285–289.

    Article  Google Scholar 

  73. M. Gholami, H. R. Nassehinia, A. Jonidi-Jafari, S. Nasseri and A. Esrafili, J. Environ. Health Sci. Eng., 2014, 12, 1–8.

    Article  Google Scholar 

  74. J. H. Xu, W. Wang, M. Shang, S. M. Sun, J. Ren and L. Zhang, Appl. Catal., B, 2010, 12, 227–232.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. -K. Lee.

Additional information

Electronic supplementary information (ESI) available: EDS analysis shown in Fig. S1 confirmed the presence of the expected amounts of Bi, Fe and O in BFO MNPs, and the successful Ba doping in the prepared Ba-doped BFO MNPs. The quality and composition of the nanoparticles were obtained from XPS studies, and are shown in Fig. S2. See DOI: 10.1039/c6pp00212a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, T., Lee, B.K. Comparison of benzene and toluene photodegradation under visible light irradiation by Ba-doped BiFeO3 magnetic nanoparticles with fast sonochemical synthesis. Photochem Photobiol Sci 16, 86–95 (2017). https://doi.org/10.1039/c6pp00212a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00212a

Navigation