Skip to main content
Log in

Ultraviolet solar radiation in the tropical central Andes (12.0°S)

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Ultraviolet (UV) solar irradiance measurements performed in the central Andes, Huancayo, Peru (12.0°S, 75.3°W, 3313 m asl) at 1 min intervals between January 2003 and December 2006 were used to analyse daily, monthly, and annual cycles of UV solar irradiance. The measurements were performed using a GUV-511 multi-channel filter radiometer at four wavelengths: 305, 320, 340, and 380 nm. UV irradiance data under clear sky and all sky conditions were separated using a procedure based on calculation of normalized irradiance. In February, the highest hourly mean value at noon for the UV Index reached 18.8 for clear sky conditions and 15.5 for all sky conditions, with outlier peaks close to UVI = 28. In addition, the highest mean value for the daily erythemal dose was found also in February, reaching 7.5 kJ m−2 d−1 with a maximum outlier value close to 10.1 kJ m−2 d−1. Comparisons between the clear sky GUV measurements and TUV model estimations were evaluated with statistical quantities showing values of R2 close to 0.98. The total ozone column and trace gases were obtained from OMI. The aerosol parameters were obtained from MODIS. The enhancements due to clouds of spectral irradiance at 340 nm as compared to a cloudless sky reach maxima of 20%. These results indicate that tropical central Andes has among the highest incident ultraviolet solar radiation in the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Vázquez and A. Hanslmeier, Ultraviolet Radiation in the Solar System, Springer, 1st edn, 2006

    Book  Google Scholar 

  2. N. Jablonski and G. Chaplin, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 8962–8968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. J. Houghton, The physics of atmospheres, Cambridge University Press, 3rd edn, 2002

    Google Scholar 

  4. A. McKinlay and B. Diffey, A reference action spectrum for ultra-violet induced erythema in human skin, inHuman Exposure to Ultraviolet Radiation: Risks and Regulations, Elsevier, 1st edn, 1987

    Google Scholar 

  5. World Health Organization (WHO), World Meteorological Organization (WMO), United Nations Environment Program (UNEP) and International Comission on Non-Ionising Radiation Protection (ICNRP), Global solar UV Index: A Practical Guide, World Health Organization, Geneva, Switzerland, 1st edn, 2002

    Google Scholar 

  6. E. Thomas Gavelan, E. Sáenz-Anduaga, W. Ramos, L. Sánchez Saldaña and M. Sialer, An. Bras. Dermatol., 2011, 86, 1122–1128.

    Article  PubMed  Google Scholar 

  7. C. Sordo, C. Gutiérrez, Rev. Peru. Med. Exp. Salud Pública, 2013, 30, 113–117.

    Article  PubMed  Google Scholar 

  8. F. Zaratti, R. Piacentini, H. Guillén, S. Cabrera, S. Liley and R. McKenzie, Photochem. Photobiol. Sci., 2014, 13, 980–985.

    Article  CAS  PubMed  Google Scholar 

  9. S. Madronich, Environmental UV Photobiology, Plenum Press, 1993, vol.01, pp.1–39

    Google Scholar 

  10. F. Zaratti and R. Forno, Laboratorio de Física, Universidad Mayor de San Andrés, Organización Panamericana de la Salud, 2003, pp.27–32

    Google Scholar 

  11. N. A. Krotkov, P. K. Bhartia, J. R. Herman, V. Fioletov and J. Kerr, J. Geophys. Res., 1998, 103 D8, 8779–8794.

    Article  Google Scholar 

  12. O. V. Kalashnikova, P. M. Franklin, A. Eldering and D. Anderson, Remote Sens. Environ., 2007, 107, 65–80.

    Article  Google Scholar 

  13. J. Flores, H. Karam, E. Marques Filho, A. Pereira Filho, Theor. Appl. Climatol., 2016, 123, 593–617.

    Article  Google Scholar 

  14. R. McKenzie, P. Aucamp, A. Bais, L. Björn, M. Ilyas and S. Madronich, Photochem. Photobiol. Sci., 2011, 10, 182–198.

    Article  CAS  PubMed  Google Scholar 

  15. M. Blumthaler, W. Ambach and R. Ellinger, J. Photochem. Photobiol., B, 1997, 39, 130–134.

    Article  CAS  Google Scholar 

  16. H. Piazena, Sol. Energy, 1996, 57, 133–140.

    Article  Google Scholar 

  17. F. Zaratti, R. Forno, J. García Fuentes and M. Andrade, J. Geophys. Res., 2003, 108, 4263–4272.

    Article  Google Scholar 

  18. R. R. Cordero, G. Seckmeyer, A. Damiani, S. Riechelmann, J. Rayas and F. Labbe, Photochem. Photobiol. Sci., 2014, 23, 70–81.

    Article  Google Scholar 

  19. A. Cede, E. Luccini, L. Nuñez, R. Piacentini and M. Blumthaler, J. Geophys. Res., 2002, 107, 4165–4175.

    Article  Google Scholar 

  20. E. Luccini, A. Cede, R. Piacentini, C. Villanueva and P. Canziani, J. Geophys. Res., 2006, 111, D17312.

    Article  Google Scholar 

  21. J. Liley and R. McKenzie, Workshop: UV radiation and its effects: an update, 2006, vol.1, pp.26–37

    Google Scholar 

  22. M. Ilyas, A. Pandy and A. Syed, Atmos. Res., 1999, 51, 141–152.

    Article  Google Scholar 

  23. R. McKenzie, P. Johnston, D. Smale, B. Bodhaine and S. Madronich, J. Geophys. Res., 2001, 106 D19, 2845–2860.

    Article  Google Scholar 

  24. G. Seckmeyer, R. Erb and A. Albold, Geophys. Res. Lett., 1996, 23, 2753–2755.

    Article  Google Scholar 

  25. A. Kylling, A. Albold and G. Seckmeyer, Geophys. Res. Lett., 1997, 24, 397–400.

    Article  CAS  Google Scholar 

  26. U. Feister, N. Cabrol and D. Hader, Atmosphere, 2015, 6, 1211–1228.

    Article  Google Scholar 

  27. A. de Miguel, R. Román, J. Bilbao and D. Mateos, J. Atmos. Sol.-Terr. Phys., 2011, 73, 578–586.

    Article  Google Scholar 

  28. IGP, Atlas Climático de precipitación y temperatura del aire en la cuenca del río Mantaro, Fondo Editorial CONAM, Primera edn, 2005, vol.I

  29. M. Simões Reboita, N. Krusche, T. Ambrizzi, R. Porfírio da Rocha, Terra Didatica, 2012, 8, 34–50.

    Article  Google Scholar 

  30. A. Drumond, R. Nieto, L. Gimeno and T. Ambrizzi, J. Geophys. Res., 2008, 113, D14128.

    Article  Google Scholar 

  31. R. Garreaud and J. Wallace, Mon. Weather Rev., 1997, 125, 3157–3171.

    Article  Google Scholar 

  32. J. Marengo, W. Soares, C. Saulo and M. Nicolini, J. Climate, 2004, 17 12, 2261–2280.

    Article  Google Scholar 

  33. T. Oke, Boundary Layer Climates, Taylor and Francis Group, 2nd edn, 1987

    Google Scholar 

  34. M. Kanamitsu, W. Ebisuzaki, J. Woollen, S. Yang, J. Hnilo, M. Fiorino and G. Potter, Bull. Am. Meteorol. Soc., 2002, 83, 1631–1643.

    Article  Google Scholar 

  35. Biospherical Instruments Inc., GUV-511 and GUV-541 Ground-based Ultraviolet Radiometer Systems, 2002, http://www.radiacionuv.cl/img/GUV-511&541.pdf

    Google Scholar 

  36. B. Johnsen, C. Futsather, A. ArneDahlback, A. A. Grimnes, M. Hannevik, T. Thorseth, B. Kjeldstad, T. de Lange, A. Skartveit, L. Opedal, O. Mikkelborg and G. Storsveen, Norwegian Radiation Protection Authority, 1997, vol.1, pp.44–50

    Google Scholar 

  37. Biospherical Instruments Inc., AGUV Data Processing and Quality Control Procedures, 1998, http://ftp.biospherical.com/pub/GUVsupport/Documents/GUV%20DP%20and%20QC%20Procedures.pdf

    Google Scholar 

  38. NBS, Optical radiation measurements: The 1973 nbs scale of spectral irradiance, National Bureau of Standards, 1977

    Google Scholar 

  39. NBS, Spectral irradiance calibrations. national bureau of standards special publication 250-20, U.S. Government Printing Office, Washington, D.C., 1987

    Google Scholar 

  40. A. Dahlback, Solar Radiation and Human Health, 2008, vol.10, pp.23–34

    Google Scholar 

  41. Biospherical Instruments Inc., Application Note: GUV ‘Diffey Dose’ Calculations, 1995, http://ftp.uv.biospherical.com/pub/appnotes/diffeydose.pdf

    Google Scholar 

  42. G. Bernhard and G. Seckmeyer, J. Geophys. Res., 1999, 104, 321–345.

    Google Scholar 

  43. A. Cede, E. Luccini, L. Nuñez, R. Piacentini and M. Blumthaler, Appl. Opt., 2002, 41, 6340–6350.

    Article  Google Scholar 

  44. Biospherical Instruments Inc., Understanding GUV Calibrations, 2015, http://www.biospherical.com/images/pdf/guv_calibrations_006464ka_an2015-0001_rev1.pdf

    Google Scholar 

  45. P. Levelt, G. van den Oord, M. Dobber, A. Malkki, H. Visser, J. de Vries, P. Stammes, J. Lundell and H. Saari, IEEE Trans. Geosci. Remote Sens., 2006, 44, 1093–1101.

    Article  Google Scholar 

  46. P. K. Bhartia and C. Wellemeyer, in OMI Ozone Products, ATBD-OMI-02, ed. P. K. Bhartia, 2002, vol.02, pp.15–31

    Google Scholar 

  47. W. Menzel, S. Seemann, J. Li and L. Gumley, Cooperative Institute for Meteorological Satellite Studies, 2002, vol.01, pp.1–39

    Google Scholar 

  48. United Nations, United Nations Environment Program, 2014, vol.1, pp.2–3

    Google Scholar 

  49. T. Van Heuklon, Sol. Energy, 1978, 22, 63–68.

    Article  Google Scholar 

  50. S. Ningombam, S. Jade, T. Shrungeshwara and H. Song, J. Atmos. Sol.-Terr. Phys., 2016, 137, 76–85.

    Article  Google Scholar 

  51. C. Long and T. Ackerman, J. Geophys. Res., 2000, 105, 609–626.

    Article  Google Scholar 

  52. C. Lovengreen, H. Fuenzalida and L. Videla, J. Geophys. Res., 2005, 110, D14207.

    Article  Google Scholar 

  53. M. Reno and C. Hansen, Renewable Energy, 2016, 90, 520–531.

    Article  Google Scholar 

  54. D. Djafer, A. Irbah and M. Zaiani, Renewable Energy, 2017, 101, 347–355.

    Article  Google Scholar 

  55. S. Madronich, R. McKenzie, L. Björn and M. Caldwell, J. Photochem. Photobiol., B, 1998, 46, 5–19.

    Article  CAS  Google Scholar 

  56. SENAMHI, Servicio Nacional de Meteorologia e Hidrologia del Perú, 2016, vol.2, pp.9–11

    Google Scholar 

  57. R. Chadysiene and A. Girgzdys, J. Environ. Eng Landscape, 2008, 16 2, 83–88.

    Article  Google Scholar 

  58. L. Elterman, Air Force Cambridge Research Laboratories, 1968, vol.1, AFCRL–68–0153

    Google Scholar 

  59. M. Andrade, R. Forno, E. Palenque and F. Zaratti, Sociedad Boliviana de Física, Instituto de Investigaciones Físicas-U. Mayor de San Andrés, Revista Boliviana de Física, 1997, pp.60–63

    Google Scholar 

  60. R. Piacentini, A. Cede and H. Barcena, J. Atmos. Sol.-Terr., 2003, 65, 727–731.

    Article  Google Scholar 

  61. F. Mims and J. Frederick, Nature, 1994, 371, 291.

    Article  Google Scholar 

  62. J. Calbó, J. González, J. Badosa, R. McKenzie and B. Liley, How large and how long are UV and total radiation enhancements?, 2017, DOI: 10.1063/1.4975564.

    Book  Google Scholar 

  63. R. McKenzie, B. Liley, M. Kotkamp and P. Disterhoft, Peak UV: Spectral contributions from cloud enhancements, 2017, DOI: 10.1063/1.4975570.

    Google Scholar 

  64. N. Cabrol, U. Feister, D. Háder, H. Piazena, E. Grin and A. Klein, Front. Environ. Sci., 2014, 2, 1–6.

    Article  Google Scholar 

  65. D. Chu, Y. Kaufman, C. Ichoku, L. Remer, D. Tanre and B. Holben, Geophys. Res. Lett., 2002, 29 12, 1–4.

    Article  Google Scholar 

  66. C. Ichoku, D. Chu, S. Mattoo, Y. Kaufman, L. Remer, D. Tanre, I. Slutsker and B. Holben, Geophys. Res. Lett., 2002, 29 12, 1–4.

    Article  Google Scholar 

  67. L. Remer, D. Tanre, Y. Kaufman, C. Ichoku, S. Mattoo, R. Levy, D. Chu, B. Holben, O. Dubovik, A. Smirnov, J. Martins, R. Li and Z. Ahmad, Geophys. Res. Lett., 2002, 1–4, DOI: 10.1029/2001GL013204.

    Google Scholar 

  68. V. Vinoj, S. Babu, S. Satheesh, K. Moorthy and Y. J. Kaufman, J. Geophys. Res., 2004, 109, DOI: 10.1029/2003JD004329.

    Google Scholar 

  69. S. Tripathi, S. Dey, A. Chandel, S. Srivastava, R. Singh and B. Holben, Ann. Geophys., 2005, 23, 1093–1101.

    Article  Google Scholar 

  70. M. Van Hoosier, Personal communication, 1996, 1, 1–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis F. Suárez Salas.

Additional information

Electronic supplementary information (ESI) available: Annual cycle of UV radiation in the central Andes (12°S). See DOI: 10.1039/C6PP00161K

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suárez Salas, L.F., Flores Rojas, J.L., Pereira Filho, A.J. et al. Ultraviolet solar radiation in the tropical central Andes (12.0°S). Photochem Photobiol Sci 16, 954–971 (2017). https://doi.org/10.1039/c6pp00161k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00161k

Navigation