Skip to main content
Log in

Experimental and computational characterization of photosensitized conformational effects mediated by protoporphyrin ligands on human serum albumin

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

When investigating the interaction between proteins and protoporphyrins in aqueous solution, one typically has to contend with the tendency of the latter to form polydispersed aggregates. The interference of aggregated protoporphyrins manifests, at least, at two levels: aggregates sequester the majority of the protoporphyrin molecules in solution and prevent their interaction with the proteins, but also their presence interferes with optical experiments such as absorption and fluorescence spectroscopy. In this study we present a protocol which uses dialysis and centrifugation to eliminate the aggregates and yield solutions dominated by non-covalent complexes of albumin (HSA) and protoporphyrins. The elimination of the aggregates enabled us to observe effects which had not been previously observed such as eliminating the discrepancy between the binding constants obtained through the quenching of HSA. fluorescence and the one obtained through the emission of the protoporphyrins. Moreover the elimination of the aggregated protoporphyrins enabled us to reveal the occurrence of fluorescence resonance energy transfer (FRET) between the Trp214 residue of HSA. and the porphyrin ligands. FRET. data were then used to estimate the location of metal free as well as Zn-protoporphyrin IX. relative to the well-known location of Trp214. This information was used to refine docking simulations to find the best binding site for the two protoporphyrins. In addition we observed that the irradiation of the protoporphyrins in the visible region prompts small conformational changes in HSA. that appear to be largely due to tertiary modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Brieke, F. Rohrbach, A. Gottschalk, G. Mayer and A. Heckel, Light-controlled tools, Angew. Chem., Int. Ed., 2012, 51, 8446–8476.

    Article  CAS  Google Scholar 

  2. J. T. Kennis and M. L. Groot, Ultrafast spectroscopy of biological photoreceptors, Curr. Opin. Struct. Biol, 2007, 17, 623–630.

    Article  CAS  PubMed  Google Scholar 

  3. A. Amunts and N. Nelson, Plant photosystem I. design in the light of evolution, Structure, 2009, 17, 637–650.

    Article  CAS  PubMed  Google Scholar 

  4. M. Gutman, D. Huppert and E. Pines, The pH. Jump: A. rapid modulation of pH. of aqueous solution by a laser pulse, J. Am. Chem. Soc, 1981, 103, 3709–3713.

    Article  CAS  Google Scholar 

  5. P. A. Thompson, W. A. Eaton and J. Hofrichter, Protein folding initiated by laser T-jump, Biophys. J., 1996, 70, A177.

    Google Scholar 

  6. F.-S. Wang and D. G. Jay, Chromophore-assisted laser in-activation (CALI): probing protein function in situ with a high degree of spatial and temporal resolution, Trends Cell Biol, 1996, 6, 442–445.

    Article  CAS  PubMed  Google Scholar 

  7. M. Loweneck, A. G. Milbradt, C. Root, H. Satzger, W. Zinth, L. Moroder and C. Renner, A. conformational two-state peptide model system containing an ultrafast but soft light switch, Biophys. J., 2006, 90, 2099–2108.

    Article  PubMed  CAS  Google Scholar 

  8. Y. Mei and F. Zhang, Molecular Tools and Approaches for Optogenetics, Biol. Psychiatry, 2012, 71, 1033–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. N. F. Fernandez, S. Sansone, A. Mazzini and L. Brancaleon, Irradiation of the porphyrin causes unfolding of the protein in the Protoporphyrin IX/ p-Iactoglobulin non covalent complex, J. Phys. Chem. B, 2008, 112, 7592–7600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. B. McMicken, R. J. Thomas and L. Brancaleon, Photoinduced partial unfolding of tubulin bound to meso-tetrakis(sulfonatophenyl) porphyrin leads to inhibition of microtubule formation in vitro, J. Biophotonics, 2014, 7, 874–888.

    Article  CAS  PubMed  Google Scholar 

  11. M. Faller, M. Matsunaga, S. Yin, J. A. Loo and F. Guo, Heme is involved in microRNA. processing, Nat. Struct. Mol Biol, 2007, 14, 23–29.

    Article  CAS  PubMed  Google Scholar 

  12. H. M. Girvan and A. W. Munro, Heme sensor proteins, J. Biol. Chem., 2013, 288, 13194–13203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M. Paoli, J. Maries-Wright and A. Smith, Structure-function relationships in heme-proteins, DNA. Cell Biol, 2002, 21, 271–280.

    Article  CAS  PubMed  Google Scholar 

  14. L. Brancaleon, S. W. Magennis, I. D. W. Samuel, E. Namdas, A. Lesar and H. Moseley, Characterization of the photoproducts of Protoporphyrin LX bound to human serum albumin and immunoglobulin G, Biophys. Chem., 2004, 109, 351–360.

    Article  CAS  PubMed  Google Scholar 

  15. E. Knobler, M. B. Poh-Fitzpatrick, D. Kravetz, W. R. Vincent, U. Muller-Eberhard and S. H. Vincent, Interaction of hemopexin, albumin and liver fatty acid-binding protein with protoporphyrin, Hepatology, 1989, 10, 995–997.

    Article  CAS  PubMed  Google Scholar 

  16. F. Ricchelli, S. Gobbo, G. Moreno, C. Salet, L. Brancaleon and A. Mazzini, Photophysical properties of porphyrin planar aggregates in liposomes, Eur. J. Biochem., 1998, 253, 760–765.

    Article  CAS  PubMed  Google Scholar 

  17. S. G. Ballard and D. Mauzerall, Photo-initiated ion formation from octaethyl-porphyrin and its zinc chelate as a model for electron transfer in reaction centers, Biophys. J., 1978, 24, 335–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J. C. Croney, M. K. Helms, D. M. Jameson and R. W. Larsen, Temperature dependence of photoinduced electron transfer within self-assembled uroporphyrin-cytochrome c complexes, J. Phys. Chem. B, 2000, 104, 973–977.

    Article  CAS  Google Scholar 

  19. E. Schneider and D. S. Clark, Cytochrome P450 (CYP) enzymes and the development of CYP. biosensors, Biosens. Bioelectron., 2013, 39, 1–13.

    Article  CAS  PubMed  Google Scholar 

  20. Y. Sun, A. Benabbas, W. Zeng, J. G. Kleingardner, K. L. Bren and P. M. Champion, Investigations of heme distortion, low-frequency vibrational excitations, and electron transfer in cytochrome c, Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 6570–6575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. G. Hennig, C. Gruber, M. Vogeser, H. Stepp, S. Dittmar, R. Sroka and G. M. Brittenham, Dual-wavelength excitation for fluorescence-based quantification of zinc protoporphyrin IX. and protoporphyrin IX. in whole blood, J. Biophotonics, 2014, 7, 514–524.

    Article  CAS  PubMed  Google Scholar 

  22. S. Bagdonas, L. W. Ma, V. Iani, R. Rotomskis, P. Juzenas and J. Moan, Phototransformations of 5-AminoIevuIinic acid-induced Protoporphyrin LX in vitro: a spectroscopic study, Photochem. Photobiol, 2000, 72, 186–192.

    Article  CAS  PubMed  Google Scholar 

  23. J. C. Kennedy and R. H. Pottier, Endogenous protoporphyrin LX, a clinically useful photosensitiser for photodynamic therapy, J. Photochem. Photobiol, B, 1992, 14, 275–292.

    Article  CAS  Google Scholar 

  24. M. K. Khaing Oo, Y. Yang, Y. Hu, M. Gomez, H. Du and H. Wang, Gold nanoparticle-enhanced and size-dependent generation of reactive oxygen species from protoporphyrin IX ACS. Nano, 2012, 27, 1939–1947.

    Google Scholar 

  25. S. Tan, B. Su, C. Roussel and H. H. Girault, Protoporphyrin IX. sensitized titanium oxide gel electrode, Inorg. Chim. Acta, 2008, 361, 746–760.

    Article  CAS  Google Scholar 

  26. M. Gouterman, Study of the effects of substitution on the absorption spectra of porphin, J. Chem. Phys., 1959, 30, 1139–1161.

    Article  CAS  Google Scholar 

  27. S. Karthikeyan and J. Y. Lee, Zinc-Porphyrin Based Dyes for Dye-Sensitized Solar Cells, J. Phys. Chem. A, 2013, 117, 10973–10979.

    Article  CAS  PubMed  Google Scholar 

  28. A. Karotki, M. Drobizhev, M. Kruk, C. Spangler, E. Nickel, N. Mamardashvili and A. Rebane, Enhancement of two-photon absorption in tetrapyrrolic compounds, J. Opt. Soc. Am. B, 2003, 20, 321–332.

    Article  CAS  Google Scholar 

  29. R. S. Mclsaac, C. N. Bedbrook and F. H. Arnold, Recent advances in engineering microbial rhodopsins for opto-genetics, Curr. Opin. Struct. Biol, 2015, 33, 8–15.

    Article  CAS  Google Scholar 

  30. F. Tian, K. Johnson, A. E. Lesar, H. Moseley, J. Ferguson, I. D. W. Samuel, A. Mazzini and L. Brancaleon, The pH-Dependent Conformational Transition of p-Lactoglobulin Modulates the Binding of Protoporphyrin IX, Biochim. Biophys. Acta, 2005, 1760, 38–46.

    Article  PubMed  CAS  Google Scholar 

  31. F. Tian, E. M. Johnson, M. Zamarripa, S. Sansone and L. Brancaleon, Binding of porphyrins to tubulin hetero-dimers, Biomacromolecules, 2007, 8, 3767–3778.

    Article  CAS  PubMed  Google Scholar 

  32. X. M. He and D. C. Carter, Atomic structure and chemistry of human serum albumin, Nature, 1992, 358, 209–215.

    Article  CAS  PubMed  Google Scholar 

  33. P. A. Zunszain, J. Ghuman, T. Komatsu, E. Tsuchida and S. Curry, Crystal structural analysis of human serum albumin complexed with hemin and fatty acid, BMC. Struct. Biol, 2003, 3, 6–15.

    Article  PubMed  PubMed Central  Google Scholar 

  34. T. C. Zhu and J. C. Finlay, The role of photodynamic therapy (PDT) physics, Med. Phys., 2008, 35, 127–136.

    Google Scholar 

  35. T. Komatsu, R.-M. Wang, P. A. Zunszain, S. Curry and E. Tsuchida, Photosensitized reduction of water to hydrogen using human serum albumin complexed with zinc-protoporphyin LX, J. Am. Chem. Soc, 2006, 128, 16297–16301.

    Article  CAS  PubMed  Google Scholar 

  36. J. E. Falk, Porphyrins and metalloporphyrins, Elsevier, Amsterdam, 1964.

    Google Scholar 

  37. E. Karnaukhova, S. Silinsky Krupnikova, M. Rajabi and A. I. Alayash, Heme binding to human alpha-1 proteinase inhibitor, Biochem. Biophys. Acta, 2012, 1820, 2020–2029.

    Article  CAS  PubMed  Google Scholar 

  38. S. C. Gill and P. H. von Hippel, Calculation of protein extinction coefficients from amino acid sequence data, Anal. Biochem., 1989, 182, 319–326.

    Article  CAS  PubMed  Google Scholar 

  39. C. R. Cantor and P. R. Schimmel, Biophysical Chemistry part II: Techniques for the study of biological structure and function, W.H. Freeman and Company, New York, 1980.

    Google Scholar 

  40. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, 2006.

    Book  Google Scholar 

  41. M. Kasha, Characterization of Electronic Transitions in Complex Molecules, Discuss Faraday Soc, 1950, 9, 14–19.

    Article  Google Scholar 

  42. S. M. Andrade and S. M. B. Costa, Spectroscopic studies on the interaction of a water soluble porphyrin and two drug carrier proteins, Biophys. J., 2002, 82, 1607–1619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. B. M. Aveline, T. Hasan and R. W. Redmond, The effects of aggregation protein binding and cellular incorporation on the photophysical properties of benzoporphyrin derivative monoacid ring A (BPDMA), J. Photochem. Photobiol, B, 1995, 30, 161–169.

    Article  CAS  Google Scholar 

  44. D. Das, M. Patra and A. Chakrabarti, Binding of hemin, hematoporphyrin, and protoporphyrin with erythroid spectrin: fluorescence and molecular docking studies, Eur. Biophys. J., 2015, 44, 171–182.

    Article  CAS  PubMed  Google Scholar 

  45. J. Wojaczynski, H. Wójtowicz, M. Bielecki, M. Olczak, J. W. Smalley, L. Latos-Grazynski and T. Olczak, Iron(III) mesoporphyrin IX. and iron(III) deuteroporphyrin IX bind to the Porphyromonas gingivalis HmuY. hemophore, Biochem. Biophys. Res. Commun., 2011, 411, 299–304.

    Article  CAS  PubMed  Google Scholar 

  46. H. A. Benesi and J. H. Hildebrand, A spectroscopic investigation of the interaction of iodine with aromatic hydrocarbons, J. Am. Chem. Soc, 1949, 71, 2703–2707.

    Article  CAS  Google Scholar 

  47. T. Hayashita, S. Taniguchi, Y. Tanamura, T. Uchida, S. Nishizawa, N. Teramae, Y. S. Jin, J. C. Leeb and R. A. Bartsch, A dibenzo-16-crown-5 fluoroionophore for selective emission ratio sensing of Na+ in basic aqueous dioxane solution, J. Chem. Soc, Perkin Trans 2, 2000, 2000, 1003–1006.

    Article  Google Scholar 

  48. H. M. Kim, C. Jung, B. R. Kim, S.-Y. Jung, J. H. Hong, Y-G. Ko, K. J. Lee and B. R. Cho, Environment-Sensitive Two-Photon Probe for Intracellular Free Magnesium Ions in Live Tissue, Angew. Chem., Int. Ed., 2007, 46, 3460–3463.

    Article  CAS  Google Scholar 

  49. K. Jurek, J. Kabatc, K. Kostrzewska and M. Grabowska, New Fluorescence Probes for Biomolecules, Molecules, 2015, 20, 13071–13079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. B. J. Harvey, E. Bell and L. Brancaleon, A Tryptophan Rotamer Located in a Polar Environment Probes pH-Dependent Conformational Changes in Bovine beta-Lactoglobulin A, J. Phys. Chem. B, 2007, 111, 2610–2620.

    Article  CAS  PubMed  Google Scholar 

  51. D. V. O’Connor and D. Phillips, Time-Correlated Single Photon Counting, Academic Press, London, UK, 1984.

    Google Scholar 

  52. J. Durbin and G. S. Watson, Testing for serial correlation in least squares regression. II, Biometrika, 1951, 38, 159–178.

    Article  CAS  PubMed  Google Scholar 

  53. S. M. Kelly, T. J. Jess and N. C. Price, How to study proteins by circular dichroism, Biochim. Biophys. Acta, 2005, 1751, 119–139.

    Article  CAS  PubMed  Google Scholar 

  54. N. J. Greenfield, Using circular dichroism spectra to estimate protein secondary structure, Nat. Protoc, 2006, 1, 2876–2890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. C. W. Johnson, in Circular Dichroism and the Conformational Analysis of Biomolecules, ed. G. D. Fasman, Springer, 1996, pp. 635–653.

  56. N. Sreerama and R. W. Woody, A. self-consistent method for the analysis of protein secondary structure from circular dichroism, Anal Biochem., 2003, 209, 32–44.

    Article  Google Scholar 

  57. H. Yanai, K. Takeuchi and Y. Takane, Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition, Springer, New York, 2011.

    Book  Google Scholar 

  58. N. Sreerama and R. W. Woody, Computation and Analysis of Protein Circular Dichroism Spectra, Methods Enzymol, 2004, 383, 318–351.

    Article  CAS  PubMed  Google Scholar 

  59. T. Patrice, D. Olivier and L. Bourre, PDT. in clinics: indications, results, and markets, J. Environ. Pathol. Toxicol. Oncol, 2006, 25, 467–485.

    Article  PubMed  Google Scholar 

  60. T. Forster, in Modern Quantum Chemistry, ed. O. Sinanoglu, Academic Press, New York, 1965.

  61. P. Wu and L. Brand, Resonance Energy transfer: methods and applications, Anal. Biochem., 1994, 218, 1–13.

    Article  CAS  PubMed  Google Scholar 

  62. G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew and A. J. Olson, Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J. Comput. Chem., 1998, 19, 1639–1662.

    Article  CAS  Google Scholar 

  63. M. J. Farooqi, M. A. Penick, G. R. Negrete and L. Brancaleon, Interaction of Human Serum Albumin with Novel 3,9-Disubstituted Perylenes, Protein J., 2013, 32, 493–504.

    Article  CAS  PubMed  Google Scholar 

  64. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, G. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford, CT, 2009.

    Google Scholar 

  65. A. K. Shaw and S. K. Pal, Resonance energy transfer and ligand binding studies on pH-induced folded states of human serum albumin, J. Photochem. Photobiol., B., 2008, 90, 187–197.

    Article  CAS  Google Scholar 

  66. J. A. Westberg, J. Jiang and L. C. Andersson, Stanniocalcin 1 binds hemin through a partially conserved heme regulatory motif, Biochem. Biophys. Res. Commun., 2011, 409, 266–269.

    Article  CAS  PubMed  Google Scholar 

  67. J. Belcher, S. Sansone, N. F. Fernandez, W. E. Haskins and L. Brancaleon, Photoinduced Unfolding of Beta-Lactoglobulin Mediated by a Water-Soluble Porphyrin, J. Phys. Chem. B, 2009, 113, 6020–6030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. H. Wójtowicz, M. Bielecki, J. Wojaczynski, M. Olczak, J. W. Smalley and T. Olczak, The Porphyromonas gingivalis HmuY haemophore binds gallium(III), zinc(II), cobalt(III), manganese(III), nickel(II), and copper(II) protoporphyrin IX. but in a manner different to iron(III) protoporphyrin IX, Metallomics, 2013, 5, 343–351.

    Article  PubMed  CAS  Google Scholar 

  69. R. Curvale, M. Masuelli and A. Perez Padillia, Intrinsic viscosity of bovine serum albumin conformers, Int. J. Biol. Macromol, 2008, 42, 133–137.

    Article  CAS  PubMed  Google Scholar 

  70. M. L. Ferrer, R. Duchowicz, B. Carrasco, J. Garcia de la Torre and A. U. Acuna, The conformation of serum albumin in solution: a combined phosophorescence depolarization-hydrodinamic modeling study, Biophys. J., 2001, 80, 2422–2430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. A. K. Shaw and S. K. Pal, Spectroscopic studies on the effect of temperature on pH-induced folded states of human serum albumin, J. Photochem. PhotobioL, B, 2008, 90, 69–77.

    Article  CAS  Google Scholar 

  72. R. J. Lindquist, K. M. Lefler, K. E. Brown, S. M. Dyar, E. A. Margulies, R. M. Young and M. R. Wasielewski, Energy Flow Dynamics within Cofacial and Slip-Stacked PeryIene-3,4-dicarboximide Dimer Models of π-Aggregates, J. Am. Chem. Soc, 2014, 136, 14912–14923.

    Article  CAS  PubMed  Google Scholar 

  73. F. C. Spano and C. Silva, H-and J-aggregate behavior in polymeric semiconductors, Annu. Rev. Phys. Chem., 2014, 65, 477–500.

    Article  CAS  PubMed  Google Scholar 

  74. H. Kano and T. Kobayashi, Time-resolved fluorescence and absorption spectroscopies of porphyrin J-aggregates, J. Chem. Phys., 2002, 116, 184–194.

    Article  CAS  Google Scholar 

  75. L. Monsu Scolaro, M. Castriciano, A. Romeo, S. Patane, E. Cefali and M. Allegrini, Aggregation behavior of protoporphyrin IX in aqueous solutions: clear evidence of vescicle formation, J. Phys. Chem. B, 2002, 106, 2453–2459.

    Article  CAS  Google Scholar 

  76. L. Brancaleon and H. Moseley, Effects of Photoproduct on the Binding Properties of Protoporphyrin IX, Biophys. Chem., 2002, 96, 77–87.

    Article  CAS  PubMed  Google Scholar 

  77. J. R. Lakowicz, On spectral relaxation in proteins, Photochem. PhotobioL, 2000, 72, 421–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. D. Brune and S. Kim, Predicting protein diffusion coefficients, Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 3835–3839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. B. Bonneau, C. Vever-Bizet, P. Morliere, J. C. Maziere and D. Brault, Equilibrium and Kinetic Studies of the Interactions of a Porphyrin with Low-Density Lipoproteins, Biophys. J., 2002, 83, 3470–3481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Q. Gu and J. E. Kenny, Improvement of inner filter effect correction based on determination of effective geometric parameters using a conventional fluorimeter, Anal. Chem., 2009, 81, 420–426.

    Article  CAS  PubMed  Google Scholar 

  81. M. van de Weert and L. Stella, Fluorescence quenching and ligand binding: a critical discussion of a popular methodology, J. Mol. Struct, 2011, 998, 144–150.

    Article  CAS  Google Scholar 

  82. M. Amiri, K. Jankeje and J. R. Albani, Origin of fluorescence lifetimes in human serum albumin. Studies on native and denatured protein, J. Fluoresc, 2010, 20, 651–656.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/C6pp00096g

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Allen, R., Rozinek, S. et al. Experimental and computational characterization of photosensitized conformational effects mediated by protoporphyrin ligands on human serum albumin. Photochem Photobiol Sci 16, 694–710 (2017). https://doi.org/10.1039/c6pp00096g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00096g

Navigation