Skip to main content
Log in

Harnessing and storing visible light using a heterojunction of WO3 and CdS for sunlight-free catalysis

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

CdS and WO3 (CdS/WO3) bilayer film electrodes are fabricated to harness solar visible light (λ > 420 nm) and store photogenerated electrons for possible use during periods of unavailable sunlight. The overall film thickness is approximately 50–60 μm, while the CdS underlayer is slightly thinner than WO3 owing to a packing effect. The energetics of CdS and WO3 determined by optical and electrochemical analyses enables cascaded electron transfer from CdS to WO3. The open circuit potential (EOCP) of CdS/WO3 under visible light (approximately −0.35 V vs. SCE) is nearly maintained even in the absence of light, with a marginal decrease (∼0.15 V) in ∼20 h of darkness. Neither CdS nor WO3 alone exhibits such behavior. The electron lifetimes (τ) of CdS and WO3 are each less than 100 s, whereas coupling of the two increases τ to ∼2500 s at the EOCP. In the absence of dissolved O2, τ further increases, suggesting that O2 is the primary electron acceptor. In spite of oxic conditions, CdS/WO3 is capable of continuously reducing Cr6+ to Cr3+ and Ag+ to Ag0 after removal of visible light. The number of utilized (i.e., stored) electrons in the reductions of Cr6+ and Ag+ are estimated to be ∼1.08 × 1017 and ∼0.87 × 1017, respectively. The primary role of CdS is to be a visible-light absorber in the 420–565 nm wavelength range, transferring the photogenerated electrons to WO3. The electrons stored in WO3 are gradually released to electron acceptors with suitable redox potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. M. I. Hoffert, K. Caldeira, A. K. Jain, E. F. Haites, L. D. D. Harvey, S. D. Potter, M. E. Schlesinger, S. H. Schneider, R. G. Watts, T. M. L. Wigley, D. J. Wuebbles, Nature, 1998, 395, 881–884.

    Article  CAS  Google Scholar 

  2. N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 15729–15735.

    Article  CAS  Google Scholar 

  3. R. Memming, Semiconductor Electrochemistry, Wiley-VCH, Weinheim, 2001.

    Google Scholar 

  4. H. O. Finklea, Semiconductor Electrodes, Elsevier, Amsterdam, 1988.

    Google Scholar 

  5. R. van de Krol and M. Grätzel, Photoelectrochemical Hydrogen Production, Springer, New York, 2011.

    Google Scholar 

  6. L. Vayssieres, On Solar Hydrogen and Nanotechnology, John Wiley & Sons, Singapore, 2009.

    Google Scholar 

  7. H. Ibrahim, A. Ilinca, J. Perron, Renewable Sustainable Energy Rev., 2008, 12, 1221–1250.

    Article  CAS  Google Scholar 

  8. J. Barber, Chem. Soc. Rev., 2009, 38, 185–196.

    Article  CAS  Google Scholar 

  9. N. A. Campbell, L. A. Reece, M. L. Cain, S. A. Wasserman, P. V. Minorsky and R. B. Jackson, Biology, Pearson, San Francisco, 2008.

    Google Scholar 

  10. Y. K. Kim, H. Park, Energy Environ. Sci., 2011, 4, 685–694.

    Article  CAS  Google Scholar 

  11. H. Park, Y. Park, W. Kim, W. Choi, J. Photochem. Photobiol., C, 2013, 15, 1–20.

    Article  CAS  Google Scholar 

  12. S. Kim, H. Park, RSC Adv., 2013, 3, 17551–17558.

    Article  CAS  Google Scholar 

  13. H. W. Jeong, S. Y. Choi, S. H. Hong, S. K. Lim, D. S. Han, A. Abdel-Wahab, H. Park, J. Phys. Chem. C, 2014, 118, 21331–21338.

    Article  CAS  Google Scholar 

  14. S. K. Choi, U. Kang, S. Lee, D. J. Ham, S. M. Ji, H. Park, Adv. Energy Mater., 2014, 4, 1301614.

    Article  Google Scholar 

  15. U. Kang, S. K. Choi, D. J. Ham, S. M. Ji, W. Choi, D. S. Han, A. Abdel-Wahabe, H. Park, Energy Environ. Sci., 2015, 8, 2638–2643.

    Article  CAS  Google Scholar 

  16. H. Park, H. H. Ou, A. J. Colussi, M. R. Hoffmann, J. Phys. Chem. A, 2015, 119, 4658–4666.

    Article  CAS  Google Scholar 

  17. H. W. Jeong, T. H. Jeon, J. S. Jang, W. Choi, H. Park, J. Phys. Chem. C, 2013, 117, 9104–9112.

    Article  CAS  Google Scholar 

  18. S. K. Choi, W. Choi, H. Park, Phys. Chem. Chem. Phys., 2013, 15, 6499–6507.

    Article  CAS  Google Scholar 

  19. A. Bak, S. K. Choi, H. Park, Bull. Korean Chem. Soc., 2015, 36, 1487–1494.

    Article  CAS  Google Scholar 

  20. T. Tatsuma, S. Saitoh, P. Nagaotrakanwiwat, Y. Ohko, A. Fujishima, Langmuir, 2002, 18, 7777–7779.

    Article  CAS  Google Scholar 

  21. P. Nagaotrakanwiwat, T. Tatsuma, S. Saitoh, Y. Ohko, A. Fujishima, Phys. Chem. Chem. Phys., 2003, 5, 3234–3237.

    Article  Google Scholar 

  22. Y. Tian, T. Tatsuma, J. Am. Chem. Soc., 2005, 127, 7632–7637.

    Article  CAS  Google Scholar 

  23. C.-C. Nguyen, N.-N. Vu, T.-O. Do, J. Mater. Chem. A, 2016, 4, 4413–4419.

    Article  CAS  Google Scholar 

  24. J. Li, Y. Liu, Z. Zhu, G. Zhang, T. Zou, Z. Zou, S. Zhang, D. Zeng, C. Xie, Sci. Rep., 2013, 3, 2409.

    Article  Google Scholar 

  25. H. Park, K. Y. Kim, W. Choi, J. Phys. Chem. B, 2002, 106, 4775–4781.

    Article  CAS  Google Scholar 

  26. H. Park, K. Y. Kim, W. Choi, Chem. Commun., 2001, 281–282.

    Google Scholar 

  27. P. P. Gonzalez-Borrero, F. Sato, A. N. Medina, M. L. Baesso, A. C. Bento, G. Baldissera, C. Persson, G. A. Niklasson, C. G. Granqvist, A. F. da Silva, Appl. Phys. Lett., 2010, 96, 061909.

    Article  Google Scholar 

  28. R. Banerjee, R. Jayakrishnan, P. Ayyub, J. Phys.: Condens. Matter, 2000, 12, 10647–10654.

    CAS  Google Scholar 

  29. H. Kim, J. Kim, W. Kim, W. Choi, J. Phys. Chem. C, 2011, 115, 9797–9805.

    Article  CAS  Google Scholar 

  30. T. H. Jeon, W. Choi, H. Park, J. Phys. Chem. C, 2011, 115, 7134–7142.

    Article  CAS  Google Scholar 

  31. J. S. Jang and H. Park, Strategic design of heterojunction CdS photocatalysts for solar hydrogen, in Materials and Processes for Solar Fuel Production, ed V. Subramanian, B. Viswanathan and J. S. Lee, Springer, New York, 2014, pp. 1–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wooyul Kim or Hyunwoong Park.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c6pp00091f.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Park, Y., Kim, W. et al. Harnessing and storing visible light using a heterojunction of WO3 and CdS for sunlight-free catalysis. Photochem Photobiol Sci 15, 1006–1011 (2016). https://doi.org/10.1039/c6pp00091f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00091f

Navigation