Skip to main content
Log in

Microfluidic-based photocatalytic microreactor for environmental application: a review of fabrication substrates and techniques, and operating parameters

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photochemical technology with microfluidics is emerging as a new platform in environmental science. Microfluidic technology has various advantages, like better mixing and a shorter diffusion distance for the reactants and products; and uniform distribution of light on the photocatalyst. Depending on the material type and related applications, several fabrication techniques have been adopted by various researchers. Microreactors have been prepared by various techniques, such as lithography, etching, mechanical microcutting technology, etc. Lithography can be classified into photolithography, soft lithography and X-ray lithography techniques whereas the etching process is divided into wet etching (chemical etching) and dry etching (plasma etching) techniques. Several substrates, like polymers, such as polydimethyl-siloxane (PDMS), polymethyle-methacrylate (PMMA), hydrogel, etc.; metals, such as stainless steel, titanium foil, etc.; glass, such as silica capillary, glass slide, etc.; and ceramics have been used for microchannel fabrication. During degradation in a microreactor, the degradation efficiency is affected by few important parameters such as flow rate, initial concentration of the target compound, microreactor dimensions, light intensity, photocatalyst structure and catalyst support. The present paper discusses and critically reviews fabrication techniques and substrates used for microchannel fabrication and critical operating parameters for organics, especially dye degradation in the microreactor. The kinetics of degradation has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. V. Gerven, G. Mul, J. Moulijn and A. Stankiewicz, A Review of Intensification of Photocatalytic Processes, Chem. Eng. Process., 2007, 46, 781–789.

    Article  CAS  Google Scholar 

  2. M. E. Leblebici, G. D. Stefanidis and T. V. Gerven, Comparison of Photocatalytic Space-time Yields of 12 Reactor Designs for Wastewater Treatment, Chem. Eng. Process., 2015, 97, 106–111.

    Article  CAS  Google Scholar 

  3. N. Tsuchiya, K. Kuwabara, A. Hidaka, K. Oda and K. Katayama, Reaction Kinetics of Dye Decomposition Processes Monitored inside a Photocatalytic Microreactor, Phys. Chem. Chem. Phys., 2012, 14, 4734–4741.

    Article  CAS  PubMed  Google Scholar 

  4. Priyanka, V. C. Srivastava, Photocatalytic Oxidation of Dye Bearing Wastewater by Iron Doped Zinc Oxide, Ind. Eng. Chem. Res., 2013, 52, 17790–17799.

    Article  CAS  Google Scholar 

  5. P. R. Potti and V. C. Srivastava, Comparative Studies on Structural, Optical, and Textural Properties of Combustion Derived ZnO Prepared Using Various Fuels and Their Photocatalytic Activity, Ind. Eng. Chem. Res., 2012, 51, 7948–7956.

    Article  CAS  Google Scholar 

  6. A. Mills and J. Wang, Photomineralisation of 4-chlorophenol Sensitised by TiO2 Thin Films, J. Photochem. Photobiol., A, 1998, 118, 53–63.

    Article  CAS  Google Scholar 

  7. M. F. J. Dijkstra, H. J. Panneman, J. G. M. Winkelman, J. J. Kelly, A. A. C. M. Beenackers, Modeling the Photocatalytic Degradation of Formic Acid in a Reactor with Immobilized Catalyst, Chem. Eng. Sci., 2002, 57, 4895–4907.

    Article  CAS  Google Scholar 

  8. T. Oyama, A. Aoshima, S. Horikoshi, H. Hidaka, J. Zhao and N. Serpone, Solar Photocatalysis, Photodegradation of a Commercial Detergent in Aqueous TiO2 Dispersions under Sunlight Irradiation, Solar Energy, 2004, 77, 525–532.

    Article  CAS  Google Scholar 

  9. D. Robert and S. Malato, Solar Photocatalysis: A Clean Process for Water Detoxification, Sci. Total Environ., 2002, 291, 85–97.

    Article  CAS  PubMed  Google Scholar 

  10. S. Malato, J. Blanco, A. Vidal, D. Alarcon, M. I. Maldonado, J. Caceres and W. Gernjak, Applied Studied in Solar Photocatalytic Detoxification: An Overview, Solar Energy, 2003, 75, 329–336.

    Article  CAS  Google Scholar 

  11. H. Lu, M. A. Schmidt and K. F. Jensen, Photochemical Reactions and On-line UV Detection in Microfabricated Reactors, Lab Chip, 2001, 1, 22–28.

    Article  CAS  PubMed  Google Scholar 

  12. R. C. R. Wootton, R. Fortt, A. J. de Mello, A Microfabricated Nanoreactor for Safe, Continuous Generation and Use of Single Oxygen, Org. Process Res. Dev., 2002, 6, 187–189.

    Article  CAS  Google Scholar 

  13. H. Ehrich, D. Linke, K. Morgenschweis, M. Baerns and K. Jahnisch, Application of Microstructured Reactor Technology for the Photochemical Chlorination of Alkylaromatics, Chimia, 2002, 56, 647–653.

    Article  CAS  Google Scholar 

  14. K. Katayama, Y. Takeda, K. Kuwabara and S. Kuwahara, A Novel Photocatalytic Microreactor Bundle that does not Require an Electric Power Source, Chem. Commun., 2012, 48, 7368–7370.

    Article  CAS  Google Scholar 

  15. C. Shen, Y. J. Wang, J. H. Xu and G. S. Luo, Glass Capillaries with TiO2 Supported on Inner Wall as Microchannel Reactors, Chem. Eng. J., 2015, 277, 48–55.

    Article  CAS  Google Scholar 

  16. Q. Zhang, Q. Zhang, H. Wang and Y. Li, A High Efficiency Microreactor with Pt/ZnO Nanorod Arrays on the Inner Wall for Photodegradation of Phenol, J. Hazard. Mater., 2013, 254–255, 318–324.

    Article  PubMed  CAS  Google Scholar 

  17. J. Parmar, S. Jang, L. Soler, D. Kim and S. Sanchez, Nano-photocatalysts in Microfluidics, Energy Conversion and Environmental Applications, Lab Chip, 2015, 15, 2352–2356.

    Article  CAS  PubMed  Google Scholar 

  18. S. S. Ahsan, A. Gumus and D. Erickson, Redox Mediated Photocatalytic Water-Splitting in Optofluidic Microreactors, Lab Chip, 2013, 13, 409–414.

    Article  CAS  PubMed  Google Scholar 

  19. Z. Meng, X. Zhanga and J. Qin, A High Efficiency Microfluidic-Based Photocatalytic Microreactor Using Electrospun Nanofibrous TiO2 as a Photocatalyst, Nanoscale, 2013, 5, 4687–4690.

    Article  CAS  PubMed  Google Scholar 

  20. L. Schneegass, R. Bräutigam, J. M. Köhler, Miniaturized Flow-through PCR with Different Template Types in a Silicon Chip Thermocycler, Lab Chip, 2001, 1, 42–49.

    Article  CAS  PubMed  Google Scholar 

  21. Y. Kikutani, T. Horiuchi, K. Uchiyama, H. Hisamoto, M. Tokeshi and T. Kitamori, Glass Microchip with Three-Dimensional Microchannel Network for 2 × 2 Parallel Synthesis, Lab Chip, 2002, 2, 188–192.

    Article  CAS  PubMed  Google Scholar 

  22. Y. Cheng, K. Sugioka and K. Midorikawa, Microfabrication of 3D Hollow Structures Embedded in Glass by Femtosecond Laser for Lab-on-a-Chip Applications, Appl. Surf. Sci., 2005, 248, 172–176.

    Article  CAS  Google Scholar 

  23. O. Hofmann, P. Niedermann and A. Manz, Modular Approach to Fabrication of Three-dimensional Microchannel Systems in PDMS Application to Sheath Flow Microchips, Lab Chip, 2001, 1, 108–114.

    Article  CAS  PubMed  Google Scholar 

  24. M. Svedberg, M. Veszelei, J. Axelsson, M. Vangbo and F. Nikolajeff, Poly (dimethylsiloxane) Microchip: Microchannel with Integrated Open Electrospray Tip, Lab Chip, 2004, 4, 322–327.

    Article  CAS  PubMed  Google Scholar 

  25. L. H. Hung, R. Lin and A. P. Lee, Rapid Microfabrication of Solvent-Resistant Biocompatible Microfluidic Devices, Lab Chip, 2008, 8, 983–987.

    Article  CAS  PubMed  Google Scholar 

  26. M. Natali, S. Begolo, T. Carofiglioc and G. Mistura, Rapid Prototyping of Multilayer Thiolene Microfluidic Chips by Photopolymerization and Transfer Lamination, Lab Chip, 2008, 8, 492–494.

    Article  CAS  PubMed  Google Scholar 

  27. H. B. Yu, G. Y. Zhou, F. K. Chau and F. W. Lee, Optoluidic Variable Aperture, Opt. Lett., 2008, 33, 548–550.

    Article  CAS  Google Scholar 

  28. C. L. Bliss, J. N. McMullin and C. J. Backhouse, Rapid Fabrication of A Microfluidic Device with Integrated Optical Waveguides for DNA Fragment Analysis, Lab Chip, 2007, 7, 1280–1287.

    Article  CAS  PubMed  Google Scholar 

  29. I. K. Konstantinou and T. A. Albanis, Photocatalytic Transformation of Pesticides in Aqueous Titanium Oxide Suspensions Using Artificial and Solar Light: Intermediates and Degradation Pathways, Appl. Catal., B, 2003, 42, 319–335.

    Article  CAS  Google Scholar 

  30. J. M. Hermann, Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants, Catal. Today, 1999, 53, 115–129.

    Article  Google Scholar 

  31. H. D. Burrows, M. Canle, J. A. Santaballa and S. Steenken, Reaction Pathways and Mechanisms of Photodegradation of Pesticides, J. Photochem. Photobiol., B, 2002, 67, 71–108.

    Article  CAS  Google Scholar 

  32. S. Chiron, A. Fernández-Alba, A. Rodriguez and E. C. Calvo, Pesticide Chemical Oxidation: State of the Art, Water Res., 2000, 34, 366–377.

    Article  CAS  Google Scholar 

  33. V. K. Gupta, R. Jain, A. Mittal, T. A. Saleh, A. Nayak, S. Agarwal and S. Sikarwar, Photo-catalytic Degradation of Toxic Dye Amaranth on TiO2/UV in Aqueous Suspensions, Mater. Sci. Eng., C, 2012, 32, 12–17.

    Article  CAS  Google Scholar 

  34. H. Eskandarloo, A. Badiei, M. A. Behnajady and G. M. Ziarani, Minimization of Electrical Energy Consumption in the Photocatalytic Reduction of Cr(VI) by Using Immobilized Mg, Ag, Co-impregnated TiO2 Nanoparticles, RSC Adv., 2014, 4, 28587–28596.

    Article  CAS  Google Scholar 

  35. M. A. Behnajady and H. Eskandarloo, Silver and Copper Co-impregnated onto TiO2–P25 Nanoparticles and its Photocatalytic Activity, Chem. Eng. J., 2013, 228, 1207–1213.

    Article  CAS  Google Scholar 

  36. M. A. Behnajady and H. Eskandarloo, Characterization and Photocatalytic Activity of Ag–Cu/TiO2 Nanoparticles Prepared by Sol-gel Method, J. Nanosci. Nanotechnol., 2013, 13, 548–553.

    Article  CAS  PubMed  Google Scholar 

  37. J. Saien and S. Khezrianjoo, Degradation of the Fungicide Carbendazim in Aqueous Solutions with UV/TiO2 Process: Optimization, Kinetics and Toxicity Studies, J. Hazard. Mater., 2008, 157, 269–276.

    Article  CAS  PubMed  Google Scholar 

  38. V. K. Gupta, R. Jain, A. Mittal, M. Mathur and S. Sikarwar, Photochemical Degradation of the Hazardous Dye Safranin-T Using TiO2 Catalyst, J. Colloid Interface Sci., 2007, 309, 464–469.

    Article  CAS  PubMed  Google Scholar 

  39. J. Schwitzgebel, J. G. Ekerdt, H. Gerischer and A. Heller, Role of the Oxygen Molecule and of the Photogenerated Electron in TiO2-photocatalyzed Air Oxidation Reactions, J. Phys. Chem., 1995, 99, 5633–5638.

    Article  CAS  Google Scholar 

  40. S. Xiong, S. George, Z. Ji, S. Lin, H. Yu, R. Damoiseaux, B. France, K. W. Ng and S. C. J. Loo, Size of TiO2 Nanoparticles Influences Their Phototoxicity: An in Vitro Investigation, Arch. Toxicol., 2013, 87, 99–109.

    Article  CAS  PubMed  Google Scholar 

  41. A. Fujishima, X. Zhang and D. A. Tryk, TiO2 Photocatalysis and Related Surface Phenomena, Surf. Sci. Rep., 2008, 63, 515–582.

    Article  CAS  Google Scholar 

  42. M. Ni, M. K. H. Leung, D. Y. C. Leung and K. Sumathy, A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production, Renewable Sustainable Energy Rev., 2007, 11, 401–425.

    Article  CAS  Google Scholar 

  43. Y. Yu, J. C. Yu, J. G. Yu, Y. C. Kwok, Y. K. Che, J. C. Zhao, L. Ding, W. K. Ge and P. K. Wong, Enhancement of Photocatalytic Activity of Mesoporous TiO2 by Using Carbon Nanotubes, Appl. Catal., A, 2005, 289, 186–196.

    Article  CAS  Google Scholar 

  44. M. N. Chong, B. Jin, C. W. K. Chow and C. Saint, Recent Developments in Photocatalytic Water Treatment Technology: A Review, Water Res., 2010, 44, 2997–3027.

    Article  CAS  PubMed  Google Scholar 

  45. M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari and D. D. Dionysiou, A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications, Appl. Catal., B, 2012, 125, 331–349.

    Article  CAS  Google Scholar 

  46. J. C. Yu, J. Yu, W. Ho, Z. Jiang and L. Zhang, Effects of F-Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders, Chem. Mater., 2002, 14, 3808–3816.

    Article  CAS  Google Scholar 

  47. H. Wang and J. P. Lewis, Effects of Dopant States on Photoactivity in Carbon-Doped TiO2, J. Phys.: Condens. Matter, 2005, 17, L209–L213.

    CAS  Google Scholar 

  48. J. Ananpattarachai, P. Kajitvichyanukul and S. Seraphin, Visible Light Absorption Ability and Photocatalytic Oxidation Activity of Various Interstitial N-doped TiO2 Prepared from Different Nitrogen Dopants, J. Hazard. Mater., 2009, 168, 253–261.

    Article  CAS  PubMed  Google Scholar 

  49. M. Ghaffari, H. Huang, P. Y. Tan and O. K. Tan, Synthesis and Visible Light Photocatalytic Properties of SrTi(1−x)FexO(3−σ) Powder for Indoor Decontamination, Powder Technol., 2012, 225, 221–226.

    Article  CAS  Google Scholar 

  50. S. Sakthivel and H. Kisch, Daylight Photocatalysis by Carbonmodified Titanium Dioxide, Angew. Chem., Int. Ed., 2003, 42, 4908–4911.

    Article  CAS  Google Scholar 

  51. T. Morikawa, R. Asahi, T. Ohwaki, K. Aoki, K. Suzuki and Y. Taga, Visible-Light Photocatalyst-Nitrogen Doped Titanium Dioxide, R&D Rev. Toyota CRDL, 2005, 40, 45–50.

    CAS  Google Scholar 

  52. N. Sobana, M. V. Muruganandam and M. S. Swaminathan, Characterization of AC–ZnO Catalyst and its Photocatalytic Activity on 4-acetylphenol Degradation, Catal. Commun., 2008, 9, 262–268.

    Article  CAS  Google Scholar 

  53. Y. Wu, M. Xing, B. Tian, J. Zhang and F. Chen, Preparation of Nitrogen and Fluorine Co-Doped Mesoporous TiO2 Microsphere and Photodegradation of Acid Orange 7 under Visible Light, Chem. Eng. J., 2010, 162, 710–717.

    Article  CAS  Google Scholar 

  54. T. Yu, X. Tan, L. Zhao, Y. Yin, P. Chen and J. Wei, Characterization, Activity And Kinetics of A Visible Light Driven Photocatalyst: Cerium and Nitrogen Co-Doped TiO2 Nanoparticles, Chem. Eng. J., 2010, 157, 86–92.

    Article  CAS  Google Scholar 

  55. N. Bao, Q. Zhang, J.-J. Xu, Fabrication of Poly (dimethylsiloxane) Microfluidic System Based on Masters Directly Printed with an Office Laser Printer, J. Chromatogr., A, 2005, 1089, 270–275.

    Article  CAS  Google Scholar 

  56. A. Muck, J. Wang and M. Jacobs, Fabrication of Poly (methyl methacrylate) Microfluidic Chips by Atmospheric Molding, Anal. Chem., 2004, 76, 2290–2297.

    Article  CAS  PubMed  Google Scholar 

  57. S. L. R. Barker, M. J. Tarlov and H. Canavan, Plastic Microfluidic Devices Modified with Polyelectrolyte Multilayers, Anal. Chem., 2000, 72, 4899–4903.

    Article  CAS  PubMed  Google Scholar 

  58. X. Bai, C. Roussel and H. Jensen, Polyelectrolyte-Modified Short Microchannel for Cation Separation, Electrophoresis, 2004, 25, 931–935.

    Article  CAS  PubMed  Google Scholar 

  59. S. J. Qin and W. J. Li, Micromachining of Complex Channel Systems in 3D Quartz Substrates Using Q-Switched Nd: YAG Laser, Appl. Phys. A: Mater. Sci. Process., 2002, 74, 773–777.

    Article  CAS  Google Scholar 

  60. P. Pal and K. Sato, Various Shapes of Silicon Freestanding Microfluidic Channels and Microstructures in One Step Lithography, J. Micromech. Microeng., 2009, 19, 055003.

    Article  CAS  Google Scholar 

  61. J. M. Fernandez-Pradas, D. Serrano and P. Serra, Laser Fabricated Microchannels Inside Photostructurable Glass-ceramic, Appl. Surf. Sci., 2009, 255, 5499–5502.

    Article  CAS  Google Scholar 

  62. M. J. Madou, Fundamentals of Microfabrication, CRC Press, Boca Raton, FL, 2nd edn, 2002.

    Google Scholar 

  63. D. Lai, J. M. Labuz, J. Kim, G. D. Luker, A. Shikanov and S. Takayama, Simple Multi-Level Microchannel Fabrication by Pseudo-Grayscale Backside Diffused Light Lithography, RSC Adv., 2013, 3, 19467–19473.

    Article  CAS  PubMed  Google Scholar 

  64. M. Nadasan and A. Manea, Design and Fabrication of the Microchannels for Microfluidics Applications, U.P.B. Sci. Bull., 2009, 71, 125–134.

    Google Scholar 

  65. J. C. McDonald, D. C. Duffy and J. R. Anderson, Fabrication of Microfluidic Systems in Poly (dimethylsiloxane), Electrophoresis, 2000, 21, 27–40.

    Article  CAS  PubMed  Google Scholar 

  66. M. Abdelgawad, C. Wu and W. Y. Chien, A Fast and Simple Method to Fabricate Circular Microchannels in Polydimethylsiloxane (PDMS), Lab Chip, 2011, 11, 545–551.

    Article  CAS  PubMed  Google Scholar 

  67. P. Yao, G. J. Schneider and D. W. Prather, Three Dimensional Lithographical Fabrication of Microchannels, J. Microelectromech. Syst., 2005, S14, 799–805.

    Google Scholar 

  68. S. Choi, J.-K. Park, Two Steps Photolithography to Fabricate Multilevel Microchannels, Biomicrofluidics, 2010, 4, 046503.

    Article  PubMed Central  Google Scholar 

  69. R. Arayanarakool, S. Le Gac, A. van den Berg, Low-temperature, Simple and Fast Integration Technique of Microfluidic Chips by Using a UV-Curable Adhesive, Lab Chip, 2010, 10, 2115–2121.

    Article  CAS  PubMed  Google Scholar 

  70. Y. Xia and G. M. Whitesides, Soft Lithography, Annu. Rev. Mater. Sci., 1998, 28, 153–184.

    Article  CAS  Google Scholar 

  71. H. Becker and L. E. Locascio, Polymer Microfluidic Devices, Talanta, 2002, 56, 267–287.

    Article  CAS  PubMed  Google Scholar 

  72. K. Ueno, F. Kitagawa and H. B. Kim, Fabrication and Characteristic Responses of Integrated Microelectrodes in Polymer Channel Chip, Chem. Lett., 2000, 29, 858–859.

    Article  Google Scholar 

  73. I. Brodie and J. J. Murray, The Physics of Microfabrication, Plenum Press, New York, 1982.

    Book  Google Scholar 

  74. E. Delamarche, A. Bernard and H. Schmid, Microfluidic Networks for Chemical Patterning of Substrates: Design and Application to Bioassays, J. Am. Chem. Soc., 1998, 120, 500–508.

    Article  CAS  Google Scholar 

  75. M. S. Thomas, B. Millare, J. M. Clift, D. Bao, C. Hong and V. I. Vullev, Print-and-Peel Fabrication for Microfluidics: What’s in It for Biomedical Applications?, Ann. Biomed. Eng., 2010, 38, 21–32.

    Article  PubMed  Google Scholar 

  76. A. W. Martinez, S. T. Phillips, M. J. Butte and G. M. Whitesides, Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays, Angew. Chem., Int. Ed., 2007, 46, 1318–1320.

    Article  CAS  Google Scholar 

  77. A. W. Martinez, S. T. Phillips, E. Carrilho, S. W. Thomas, H. Sindi and G. M. Whitesides, Simple Telemedicine for Developing Regions: Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis, Anal. Chem., 2008, 80, 3699–3707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. A. W. Martinez, S. T. Phillips, B. J. Wiley, M. Gupta and G. M. Whitesides, FLASH, A Rapid Method for Prototyping Paper-Based Microfluidic Devices, Lab Chip, 2008, 8, 2146–2150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. A. W. Martinez, S. T. Phillips, G. M. Whitesides and E. Carrilho, Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices, Anal. Chem., 2010, 82, 3–10.

    Article  CAS  PubMed  Google Scholar 

  80. D. A. Bruzewicz, M. Reches and G. M. Whitesides, Low-cost Printing of Poly(dimethylsiloxane) Barriers to Define Microchannels in Paper, Anal. Chem., 2008, 80, 3387–3392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. E. Carrilho, A. W. Martinez and G. M. Whitesides, Understanding Wax Printing: A Simple Micropatterning Process for Paper-based Microfluidics, Anal. Chem., 2009, 81, 7091–7095.

    Article  CAS  PubMed  Google Scholar 

  82. E. Carrilho, S. T. Phillips, S. J. Vella, A. W. Martinez and G. M. Whitesides, Paper Microzone Plates, Anal. Chem., 2009, 81, 5990–5998.

    Article  CAS  PubMed  Google Scholar 

  83. K. M. Schilling, A. L. Lepore, J. A. Kurian and A. W. Martinez, Fully Enclosed Microfluidic Paper-Based Analytical Devices, Anal. Chem., 2012, 84, 1579–1585.

    Article  CAS  PubMed  Google Scholar 

  84. C. Cheng, A. W. Martinez, J. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, K. A. Mirica and G. M. Whitesides, Paper-based ELISA, Angew. Chem., 2010, 122, 4881–4884.

    Article  Google Scholar 

  85. F. A. Gomez, Paper Microfluidics in Bioanalysis, Bioanalysis, 2014, 6, 2911–2914.

    Article  CAS  PubMed  Google Scholar 

  86. J. Nie, Y. Liang, Y. Zhang, L. Shangwang, D. Li and S. Zhang, One-Step Patterning of Hollow Microstructures in Paper by Laser Cutting to Create Microfluidic Analytical Devices, Analyst, 2013, 138, 671–676.

    Article  CAS  PubMed  Google Scholar 

  87. C. G. Shi, X. Shan, Z. Q. Pan, J. J. Xu, C. Lu, N. Bao and H. Y. Gu, Quantum Dot (QD)-Modified Carbon Tape Electrodes for Reproducible Electrochemiluminescence (ECL) Emission on a Paper-Based Platform, Anal. Chem., 2012, 84, 3033–3038.

    Article  CAS  PubMed  Google Scholar 

  88. C. Renault, J. Koehne, A. J. Ricco and R. M. Crooks, Three-Dimensional Wax Patterning of Paper Fluidic Devices, Langmuir, 2014, 30, 7030–7036.

    Article  CAS  PubMed  Google Scholar 

  89. I. Jang and S. Song, Facile and Precise Flow Control for A Paper-Based Microfluidic Device Through Varying Paper Permeability, Lab Chip, 2015, 15, 3405–3412.

    Article  CAS  PubMed  Google Scholar 

  90. I. M. Ferrer, H. Valadez, L. Estala and F. A. Gomez, Paper Microfluidic-Based Enzyme Catalyzed Double Microreactor, Electrophoresis, 2014, 35, 2417–2419.

    Article  CAS  PubMed  Google Scholar 

  91. J. L. Delaney, C. F. Hogan, J. F. Tian and W. Shen, Electrogenerated Chemiluminescence Detection in Paper-Based Microfluidic Sensors, Anal. Chem., 2011, 83, 1300–1306.

    Article  CAS  PubMed  Google Scholar 

  92. X. Li, J. Tian, T. Nguyen and W. Shen, Paper-Based Microfluidic Devices by Plasma Treatment, Anal. Chem., 2008, 80, 9131–9134.

    Article  CAS  PubMed  Google Scholar 

  93. G. Chitnis, Z. W. Ding, C. L. Chang, C. A. Savranacde and B. Ziaie, Laser-Treated Hydrophobic Paper: An Inexpensive Microfluidic Platform, Lab Chip, 2011, 11, 1161–1165.

    Article  CAS  PubMed  Google Scholar 

  94. E. M. Fenton, M. R. Mascareñas, G. P. Lopez and S. S. Sibbett, Multiplex Lateral-Flow Test Strips Fabricated by Two-Dimensional Shaping, ACS Appl. Mater. Interfaces, 2009, 1, 124–129.

    Article  CAS  PubMed  Google Scholar 

  95. C. Gallibu, C. Gallibu, A. Avoundjian and F. A. Gomez, Easily Fabricated Microfluidic Devices Using Permanent Marker Inks for Enzyme Assays, Micromachines, 2016, 71, 6.

    Article  PubMed Central  Google Scholar 

  96. A. A. Weaver, H. Reiser, T. Barstis, M. Benvenuti, D. Ghosh, M. Hunckler, B. Joy, L. Koenig, K. Raddell and M. Lieberman, Paper Analytical Devices for Fast Field Screening of Beta Lactam Antibiotics and Antituberculosis Pharmaceuticals, Anal. Chem., 2013, 85, 6453–6460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. C. Renault, X. Li, S. E. Fosdick and R. M. Crooks, Hollow-Channel Paper Analytical Devices, Anal. Chem., 2013, 85, 7976–7979.

    Article  CAS  PubMed  Google Scholar 

  98. K. Scida, B. Li, A. D. Ellington and R. M. Crooks, DNA Detection Using Origami Paper Analytical Devices, Anal. Chem., 2013, 85, 9713–9720.

    Article  CAS  PubMed  Google Scholar 

  99. P. Wang, L. Ge, S. Ge, J. Yu, M. Yan and J. Huang, A Paper-Based Phtoelectrochemical Immunoassay for Low-Cost and Multiplexed Point-Of-Care Testing, Chem. Commun., 2013, 49, 3294–3296.

    Article  CAS  Google Scholar 

  100. J. Brugger, R. A. Buser and N. F. D. Rooij, Silicon Cantilevers and Tips for Scanning Force Microscopy, Sens Actuators, A, 1992, 34, 193–200.

    Article  CAS  Google Scholar 

  101. E. Belloy, S. Thurre and E. Walckiers, The Introduction of Powder Blasting for Sensors and Microsystem Applications, Sens. Actuators, A, 2000, 84, 330–337.

    Article  CAS  Google Scholar 

  102. J.-H. Park, N.-E. Lee and J. Lee, Deep Dry Etching of Borosilicate Glass Using SF6 and SF6/Ar Inductively Coupled Plasma, Microelectron. Eng., 2005, 8, 119–128.

    Article  CAS  Google Scholar 

  103. Yi. Qin, Micro-manufacturing Engineering and Technology, Elsevier Inc., Oxford, 1st edn, 2010.

    Google Scholar 

  104. M. Hakamada, Y. Asao, T. Kuromura, Y. Chen, H. Kusuda and M. Mabuchi, Fabrication of Copper Microchannels by the Spacer Method, Scr. Mater., 2007, 56, 781–783.

    Article  CAS  Google Scholar 

  105. M. K. S. Verma, A. Majumder and A. Ghatak, Embedded Template-assisted Fabrication of Complex Microchannels in PDMS and Design of a Microfluidic Adhesive, Langmuir, 2006, 22, 10291–10295.

    Article  CAS  PubMed  Google Scholar 

  106. A. Lamberti, Microfluidic Photocatalytic Device Exploiting PDMS/TiO2 Nanocomposite, Appl. Surf. Sci., 2015, 335, 50–54.

    Article  CAS  Google Scholar 

  107. Z. Han, J. Li, W. He, S. Li, Z. Li, J. Chu and Y. Chen, A Microfluidic Device with Integrated ZnO Nanowires for Photodegradation Studies of Methylene Blue under Different Conditions, Microelectron. Eng., 2013, 111, 199–203.

    Article  CAS  Google Scholar 

  108. M. Rasponi, T. Ullah, R. J. Gilbert, G. B. Fiore and T. A. Thorsen, Realization and Efficiency Evaluation of a Micro-Photocatalytic Cell Prototype for Real-time Blood Oxygenation, Med. Eng. Phys., 2011, 337, 887–892.

    Article  PubMed  Google Scholar 

  109. H. Eskandarloo and A. Badiei, Fabrication of an Inexpensive and High Efficiency Microphotoreactor Using CO2 Laser Technique for Photocatalytic Water Treatment Applications, Environ. Technol., 2015, 36, 1063–1073.

    Article  CAS  PubMed  Google Scholar 

  110. H.-J. Koo and O. D. Velev, Biomimetic Photocatalytic Reactor with a Hydrogel-Embedded Microfluidic Network, J. Mater. Chem. A, 2013, 1, 11106–11110.

    Article  CAS  Google Scholar 

  111. G. Charles, T. Roques-Carmes, N. Becheikh, L. Falk, J.-M. Commenge and S. Corbel, Determination of Kinetic Constants of a Photocatalytic Reaction in Micro-Channel Reactors in the Presence of Mass-transfer Limitation and Axial Dispersion, J. Photochem. Photobiol., A, 2011, 223, 202–211.

    Article  CAS  Google Scholar 

  112. S. Corbel, G. Charles, N. Becheikh, T. Roques-Carmes and O. Zahraa, Modelling and Design of Microchannel Reactor for Photocatalysis, Virtual Phys. Prototyp., 2012, 7, 203–209.

    Article  Google Scholar 

  113. T. H. Yoon, L. Y. Hong and D. P. Kima, Photocatalytic Reaction Using Novel Inorganic Polymer Derived Packed Bed Microreactor with Modified TiO2 Microbeads, Chem. Eng. J., 2011, 167, 666–670.

    Article  CAS  Google Scholar 

  114. L. Lei, N. Wang, X. M. Zhang, Q. Tai, D. P. Tsai and H. L. W. Chan, Optofluidic Planar Reactors for Photocatalytic Water Treatment Using Solar Energy, Biomicrofluidics, 2010, 4, 043004.

    Article  PubMed Central  CAS  Google Scholar 

  115. H. Lindstrom, R. Wootton and A. Iles, High Surface Area Titania Photocatalytic Microfluidic Reactors, AIChE J., 2007, 53, 695–702.

    Article  CAS  Google Scholar 

  116. B. Ramos, S. Ookawara, Y. Matsushita and S. Yoshikawa, Photocatalytic Decolorization of Methylene Blue in a Glass Channel Microreactor, J. Chem. Eng. Jpn., 2014, 47, 788–791.

    Article  CAS  Google Scholar 

  117. Z. He, Y. Li, Q. Zhang and H. Wanga, Capillary Microchannel-based Microreactors with Highly Durable ZnO/TiO2 Nanorod Arrays for Rapid, High Efficiency and Continuous-Flow Photocatalysis, Appl. Catal., B, 2010, 93, 376–382.

    Article  CAS  Google Scholar 

  118. X. Li, H. Wang, K. Inoue, M. Uehara, H. Nakamura, M. Miyazaki, E. Abea and H. Maeda, Modified Micro-space Using Self-Organized Nanoparticles for Reduction of Methylene Blue, Chem. Commun., 2003, 2003, 964–965.

    Article  CAS  Google Scholar 

  119. H. Nakamura, X. Li, H. Wang, M. Uehara, M. Miyazaki, H. Shimizu and H. Maeda, A Simple Method of Self-Assembled Nano-Particles Deposition on the Micro-Capillary Inner Walls and the Reactor Application for Photo-catalytic and Enzyme Reactions, Chem. Eng. J., 2004, 101, 261–268.

    Article  CAS  Google Scholar 

  120. K. Oda, Y. Ishizaka, T. Sato, T. Eitoku and K. Katayama, Analysis of Photocatalytic Reactions Using a TiO2 Immobilized Microreactor, Anal. Sci., 2010, 26, 969–972.

    Article  CAS  PubMed  Google Scholar 

  121. Y. Yamada, M. Mizutani, T. Nakamura and K. Yano, Mesoporous Microcapsules with Decorated Inner Surface: Fabrication and Photocatalytic Activity, Chem. Mater., 2010, 22, 1695–1703.

    Article  CAS  Google Scholar 

  122. Y. Matsushita, N. Ohbab, S. Kumadab, K. Sakeda, T. Suzuki and T. Ichimura, Photocatalytic Reactions in Microreactors, Chem. Eng. J., 2008, 135S, S303–S308.

    Article  CAS  Google Scholar 

  123. M. Krivec, K. Zagar, L. Suhadolnik, M. Ceh and G. Drazic, Highly Efficient TiO2 Based Microreactor for Photocatalytic Applications, ACS Appl. Mater. Interfaces, 2013, 5, 9088–9094.

    Article  CAS  PubMed  Google Scholar 

  124. H. Eskandarloo, A. Badiei, M. A. Behnajady and G. M. Ziarani, UV-LEDs Assisted Preparation of Silver Deposited TiO2 Catalyst Bed Inside Microchannels as A High Efficiency Microphotoreactor for Cleaning Polluted Water, Chem. Eng. J., 2015, 270, 158–167.

    Article  CAS  Google Scholar 

  125. H. C. Aran, D. Salamon, T. Rijnaarts, G. Mul, M. Wessling and R. G. H. Lammertink, Porous Photocatalytic Membrane Microreactor (P2M2): A New Reactor Concept for Photochemistry, J. Photochem. Photobiol., A, 2011, 225, 36–41.

    Article  CAS  Google Scholar 

  126. S. Teekateerawej, J. Nishino and Y. Nosaka, Design and Evaluation of Photocatalytic Micro-Channel Reactors Using TiO2-Coated Porous Ceramics, J. Photochem. Photobiol., A, 2006, 179, 263–268.

    Article  CAS  Google Scholar 

  127. S. Teekateerawej, J. Nishino and Y. Nosaka, Photocatalytic Microreactor Study Using TiO2-Coated Porous Ceramics, J. Appl. Electrochem., 2005, 35, 693–697.

    Article  CAS  Google Scholar 

  128. R. Gorges, S. Meyer and G. Kreisel, Photocatalysis in Microreactors, J. Photochem. Photobiol., A, 2004, 167, 95–99.

    Article  CAS  Google Scholar 

  129. S. Corbel, N. Becheikh, T. Roques-Carmes and O. ZahraaL, Mass Transfer Measurements and Modeling in a Microchannel Photocatalytic Reactor, Chem. Eng. Res. Des., 2014, 92, 657–662.

    Article  CAS  Google Scholar 

  130. B.-C. Choi, L.-H. Xu, H.-T. Kim and D. W. Bahnemann, Photocatalytic Characteristics on Sintered Glass and Microreactor, J. Ind. Eng. Chem., 2006, 12, 663–672.

    CAS  Google Scholar 

  131. M. Gao, Z. Zeng, B. Sun, H. Zou, J. Chen and L. Shao, Ozonation of Azo Dye Acid Red 14 in A Microporous Tube-In-Tube Microchannel Reactor: Decolorization and Mechanism, Chemosphere, 2012, 89, 190–197.

    Article  CAS  PubMed  Google Scholar 

  132. M. Saquib and M. Muneer, TiO2–Photocatalytic Degradation of a Triphenyl Methane Dye (gentian violet), in Aqueous Suspensions, Dyes Pigm., 2003, 56, 37–49.

    Article  CAS  Google Scholar 

  133. S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy and V. Murugesan, Solar Photocatalytic Degradation of Azo Dye: Comparison of Photocatalytic Efficiency of ZnO and TiO2, Sol. Energy Mater. Sol. Cells, 2003, 77, 65–82.

    Article  CAS  Google Scholar 

  134. D. N. Priya, J. M. Modak, P. Trebse, R. Zabar and A. M. Raichur, Photocatalytic Degradation of Dimethoate Using LbL Fabricated TiO2/Polymer Hybrid Films, J. Hazard. Mater., 2011, 195, 214–222.

    Article  CAS  PubMed  Google Scholar 

  135. C. G. Silva and J. L. Faria, Effect of Key Operational Parameters on the Photocatalytic Oxidation of Phenol by Nanocrystalline Sol–Gel TiO2 under UV Irradiation, J. Mol. Catal. A: Chem., 2009, 305, 147–154.

    Article  CAS  Google Scholar 

  136. S. Ahmed, M. G. Rasul, W. N. Martens, R. Brown and M. A. Hashib, Advances in Heterogeneous Photocatalytic Degradation of Phenols and Dyes in Wastewater: A Review, Water, Air, Soil Pollut., 2011, 215, 3–29.

    Article  CAS  Google Scholar 

  137. Z. Shourong, H. Qingguo, Z. Jun and W. Bingkun, A Study on Dye Photoremoval in TiO2 Suspension Solution, J. Photochem. Photobiol., A, 1997, 108, 235–238.

    Article  Google Scholar 

  138. M. S. T. Conçalves, A. M. F. Oliveira-Campos, M. M. S. Pinto, P. M. S. Plasencia, M. J. R. P. Queiroz, Photochemical Treatment of Solutions of Azo Dyes Containing TiO2, Chemosphere, 1999, 39, 781–786.

    Article  Google Scholar 

  139. C. Galindo, P. Jacques and A. Kalt, Photodegradation of the Aminoazo Benzene Acid Orange 52 by Three Advanced Oxidation Processes: UV/H2O2, UV/TiO2 and VIS/TiO2 Comparative Mechanistic and Kinetic Investigations, J. Photochem Photobiol., A, 2000, 130, 35–47.

    Article  CAS  Google Scholar 

  140. A. Sharma, P. Rao, R. P. Mathur and S. C. Ametha, Photocatalytic Reactions of Xylidine Ponceau on Semiconducting Zinc Oxide Powder, J. Photochem. Photobiol., A, 1995, 86, 197–200.

    Article  CAS  Google Scholar 

  141. S. Sakthivel, B. Neppolian, M. Palanichamy, B. Arabindoo and V. Murugesan, Photocatalytic Degradation of Leather Dye, Acid Green 16 Using ZnO in the Slurry and Thin Film Forms, Indian J. Chem. Technol., 1999, 6, 161–165.

    CAS  Google Scholar 

  142. N. Daneshvar, M. Rabbani, N. Modirshahla and M. A. Behnajady, Photooxidative Degradation of Acid Red 27 in a Tubular Continuous-flow Photoreactor: Influence of Operational Parameters and Mineralization Products, J. Hazard. Mater., 2005, 118, 155–160.

    Article  CAS  PubMed  Google Scholar 

  143. M. A. Behnajady and Y. Tohidi, The Effect of Operational Parameters in the Photocatalytic Activity of Synthesized Mg/ZnO–SnO2 Nanoparticles, Desalin. Water Treat., 2015, 53, 1335–1341.

    Article  CAS  Google Scholar 

  144. S. Aber, H. Mehrizade and A. R. Khataee, Preparation of ZnS Nanocrystal and Investigation of its Photocatalytic Activity in Removal of CI Acid Blue 9 from Contaminated Water, Desalin. Water Treat., 2011, 28, 92–96.

    Article  CAS  Google Scholar 

  145. A. A. Khodja, T. Sehili, J. F. Pilichowski and P. Boule, Photocatalytic Degradation of 2- Phenylphenol on TiO2 and ZnO in Aqueous Suspensions, J. Photochem. Photobiol., A, 2001, 141, 231–239.

    Article  CAS  Google Scholar 

  146. D. Dong, P. Li, X. Li, Q. Zhao, Y. Zhang, C. Jia and P. Li, Investigation on the Photocatalytic Degradation of Pyrene on Soil Surfaces Using Nanometer Anatase TiO2 under UV Irradiation, J. Hazard. Mater., 2010, 174, 859–863.

    Article  CAS  PubMed  Google Scholar 

  147. Y. Liu, Z. Wang, B. Huang, Y. Dai, X. Qin and X. Zhang, Microstructure Modulation of Semiconductor Photocatalysts for CO2 Reduction, Curr. Org. Chem., 2014, 18, 620–628.

    Article  CAS  Google Scholar 

  148. T. Zhao, Y. Zhao and L. Jiang, Nano-/Microstructure Improved Photocatalytic Activities of Semiconductors, Philos. Trans. R. Soc. London, Ser. A, 2016, 371, 1–16.

    Google Scholar 

  149. M. Anpo, H. Yamashita, Y. Ichihashi, Y. Fujii and M. Honda, Photocatalytic Reduction of CO2 with H2O on Titanium Oxides Anchored with Micropores of Zeolites: Effects of the Structure of the Active Sites and the Addition of Pt, J. Phys. Chem. B, 1997, 101, 2632–2636.

    Article  CAS  Google Scholar 

  150. G. Lassaletta, A. Fernandez, J. P. Espinos, A. R. Gonzalez-Elipe, Spectroscopic Characterization of Quantum-Sized TiO2 Supported on Silica: Influence of Size and TiO2–SiO2 Interface Composition, J. Phys. Chem., 1995, 99, 1484–1490.

    Article  CAS  Google Scholar 

  151. S. H. Tolbert, A. Herhold, C. Johnson and A. Alivisatos, Comparison of Quantum Confinement Effects on the Electronic Absorption Spectra of Direct and Indirect Gap Semiconductor Nanocrystals, Phys. Rev. Lett., 1994, 73, 3266–3269.

    Article  CAS  PubMed  Google Scholar 

  152. Z. Q. Song, H. Y. Xu, K. W. Li, H. Wang and H. Yan, Hydrothermal Synthesis And Photocatalytic Properties of Titanium Acid H2Ti2O5 ·H2O Nanosheets, J. Mol. Catal. A: Chem., 2005, 239, 87–91.

    Article  CAS  Google Scholar 

  153. J. T. McCann, M. Marquez and Y. Xia, Melt Coaxial Electrospinning: A Versatile Method for the Encapsulation of Solid Materials and Fabrication of Phase Change Nanofibers, Nano Lett., 2006, 6, 2868–2872.

    Article  CAS  PubMed  Google Scholar 

  154. C. Xiong and J. K. J. Balkus, Fabrication of TiO2 Nanofibers from a Mesoporous Silica Film, Chem. Mater., 2005, 17, 5136–5140.

    Article  CAS  Google Scholar 

  155. S. Das and V. C. Srivastava, Hierarchical nanostructured ZnO-CuO nanocomposite and its photocatalytic activity, J. Nano Res., 2015, 35, 21–26.

    Article  CAS  Google Scholar 

  156. P. R. Potti and V. C. Srivastava, Effect of dopants on ZnO mediated photocatalysis of dye bearing wastewater: A Review, in Engineering Applications of Nanoscience and Nanomaterials, Mater. Sci. Forum, 2013, vol. 757, pp. 165–174.

    Google Scholar 

  157. T. T. Vu, L. del Rıo, T. Valdes-Solıs and G. Marban, Stainless Steel Wiremesh-Supported Zno for The Catalytic Photodegradation of Methylene Blue under Ultraviolet Irradiation, J. Hazard. Mater., 2013, 246–247, 126–134.

    Article  PubMed  CAS  Google Scholar 

  158. S. Sohrabnezhad, A. Pourahmad and E. Radaee, Photocatalytic Degradation of Basic Blue 9 By Cos Nanoparticles Supported on Almcm-41 Material As a Catalyst, J. Hazard. Mater., 2009, 170, 184–190.

    Article  CAS  PubMed  Google Scholar 

  159. F. Li, S. Sun, Y. Jiang, M. Xia, M. Sun and B. Xue, Photodegradation of an Azo Dye Using Immobilized Nanoparticles of TiO2 Supported by Natural Porous Mineral, J. Hazard. Mater., 2008, 152, 1037–1044.

    Article  CAS  PubMed  Google Scholar 

  160. X. Qiu, Z. Fang, B. Liang, F. Gu and Z. Xu, Degradation of Decabromodiphenyl Ether by Nano Zero-Valent Iron Immobilized in Mesoporous Silica Microspheres, J. Hazard. Mater., 2011, 193, 70–81.

    Article  CAS  PubMed  Google Scholar 

  161. M. S. Lucas, P. B. Tavares and J. A. Peres, Photocatalytic Degradation of Reactive Black 5 with TiO2-Coated Magnetic Nanoparticles, Catal. Today, 2013, 209, 116–121.

    Article  CAS  Google Scholar 

  162. R. Shao, L. Sun, L. Tang and Z. Chen, Preparation and Characterization of Magnetic Core-Shell ZnFe2O4@ZnO Nanoparticles and Their Application for the Photodegradation of Methylene Blue, Chem. Eng. J., 2013, 217, 185–191.

    Article  CAS  Google Scholar 

  163. J. Theurich, M. Lindner and D. W. Bahnemann, Photocatalytic Degradation of 4-chlorophenol in Aerated Aqueous Titanium Dioxide Suspensions: A Kinetic and Mechanistic Study, Langmuir, 1996, 12, 6368–6376.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimal Chandra Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Srivastava, V.C. Microfluidic-based photocatalytic microreactor for environmental application: a review of fabrication substrates and techniques, and operating parameters. Photochem Photobiol Sci 15, 714–730 (2016). https://doi.org/10.1039/c5pp00469a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00469a

Navigation