Skip to main content
Log in

Assessment of lifetime resolution limits in time-resolved photoacoustic calorimetry vs. transducer frequencies: setting the stage for picosecond resolution

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Time-resolved photoacoustic calorimetry (PAC) gives access to lifetimes and energy fractions of reaction intermediates by deconvolution of the photoacoustic wave of a sample (E-wave) with that of the instrumental response (T-wave). The ability to discriminate between short lifetimes increases with transducer frequencies employed to detect the PAC waves. We investigate the lifetime resolution limits of PAC as a function of the transducer frequencies using the instrumental response obtained with the photoacoustic reference 2-hydroxybenzophenone in toluene or acetonitrile. The instrumental response was obtained for a set of transducers with central frequencies ranging from 0.5 MHz up to 225 MHz. The simulated dependence of the lifetime resolution with the transducer frequencies was anchored on experimental data obtained for the singlet state of naphthalene with a 2.25 MHz transducer. The shortest lifetime resolved with the 2.25 MHz transducer was 19 ns and our modelling of the transducer responses indicates that sub-nanosecond lifetimes of photoacoustic transients can be resolved with transducers of central frequencies above 100 MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. K. N. Patel, A. C. Tam, Pulsed optoacoustic spectroscopy of condensed matter, Rev. Mod. Phys., 1981, 53, 517–550.

    Article  CAS  Google Scholar 

  2. K. S. Peters, G. J. Snyder, Time-resolved photoacoustic calorimetry: probing the energetics and dynamics of fast chemical and biochemical reactions, Science, 1988, 241, 1053–1057.

    Article  CAS  Google Scholar 

  3. S. E. Braslavsky, G. E. Heibel, Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution, Chem. Rev., 1992, 92, 1381–1410.

    Article  CAS  Google Scholar 

  4. L. A. Melton, T. Ni, Q. Lu, Photoacoustic calorimetry: a new cell design and improved analysis algorithms, Rev. Sci. Instrum., 1989, 60, 3217–3223.

    Article  CAS  Google Scholar 

  5. J. R. Small, L. J. Libertini, E. W. Small, Analysis of photoacoustic wave-forms using the nonlinear least-squares method, Biophys. Chem., 1992, 42, 29–48.

    Article  CAS  Google Scholar 

  6. K. S. Peters, Time-resolved photoacoustisc calorimetry - probing the energetics and dynamics of fast chemical and biochemical reactions, Science, 1988, 241, 1053–1057.

    Article  CAS  Google Scholar 

  7. M. Pineiro, A. L. Carvalho, M. M. Pereira, et al., Photoacoustic measurements of porphyrin triplet-state quantum yields and singlet-oxygen efficiencies, Chem. - Eur. J., 1998, 4, 2299–2307.

    Article  CAS  Google Scholar 

  8. P. R. Crippa, A. Vecli, C. Viappiani, Time-resolved photoacoustic spectroscopy - new developments of an old idea, J. Photochem. Photobiol. B, 1994, 24, 3–15.

    Article  CAS  Google Scholar 

  9. T. Gensch, C. Viappiani, Time-resolved photothermal methods: accessing time-resolved thermodynamics of photoinduced processes in chemistry and biology, Photochem. Photobiol. Sci., 2003, 2, 699–721.

    Article  CAS  Google Scholar 

  10. L. G. Arnaut, R. A. Caldwell, J. E. Elbert, L. A. Melton, Recent advances in photoacoustic calorimetry - theoretical basis and improvements in experimental design, Rev. Sci. Instrum., 1992, 63, 5381–5389.

    Article  CAS  Google Scholar 

  11. R. Schmidt, M. Schütz, Methodical studies on the time resolution of photoacoustic calorimetry, J. Photochem. Photobiol., A, 1997, 103, 39–44.

    Article  CAS  Google Scholar 

  12. O. V. Puchenkov, Photoacoustic diagnosis of fast photochemical and photobiological processes - analysis of inverse problem solution, Biophys. Chem., 1995, 56, 241–261.

    Article  CAS  Google Scholar 

  13. C. Serpa, J. Schabauer, A. P. Piedade, C. J. P. Monteiro, M. M. Pereira, P. Douglas, H. D. Burrows, L. G. Arnaut, Photoacoustic measurement of electron injection efficiencies and energies from excited sensitizer dyes into nanocrystalline TiO2 films, J. Am. Chem. Soc., 2008, 130, 8876–8877.

    Article  CAS  Google Scholar 

  14. C. Kim, C. Favazza, L. V. Wang, In Vivo Photoacoustic Tomography of Chemicals: High-Resolution Functional and Molecular Optical Imaging at New Depths, Chem. Rev., 2010, 110, 2756–2782.

    Article  CAS  Google Scholar 

  15. T. Okazaki, N. Hirota, M. Terazima, Picosecond time-resolved transient grating method for heat detection: Excited-state dynamics of FeCl3 and o-hydroxybenzophenone in aqueous solution, J. Phys. Chem. A, 1997, 101, 650–655.

    Article  CAS  Google Scholar 

  16. F. A. Schaberle, R. M. D. Nunes, M. Barroso, C. Serpa, L. G. Arnaut, Analytical solution for time-resolved photoacoustic calorimetry data and applications to two typical photoreactions, Photochem. Photobiol. Sci., 2010, 9, 812–822.

    Article  CAS  Google Scholar 

  17. L. G. Arnaut, S. J. Formosinho and H. D. Burrows, Chemical Kinetics, Elsevier, Amsterdam, 2007.

    Google Scholar 

  18. http://cpac.qui.uc.pt/ (accessed October 2015)

  19. M. Montalti, A. Credi, L. Prodi and M. T. Gandolfi, Handbook of Photochemistry, Taylor and Francis, 3rd edn, 2006.

    Book  Google Scholar 

  20. R. R. Hautala, N. E. Schore, N. J. Turro, A Novel Fluorescent Probe, Use of Time-Correlated Fluorescence to Explore the Properties of Micelle-Forming Detergent, J. Am. Chem. Soc., 1973, 95, 5508–5514.

    Article  CAS  Google Scholar 

  21. M. Barroso, L. G. Arnaut, S. J. Formosinho, Tunnelling corrections in hydrogen abstractions by excited-state ketones, J. Phys. Org. Chem., 2010, 23, 702–710.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio A. Schaberle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaberle, F.A., Rego Filho, F.d.A.M.G., Reis, L.A. et al. Assessment of lifetime resolution limits in time-resolved photoacoustic calorimetry vs. transducer frequencies: setting the stage for picosecond resolution. Photochem Photobiol Sci 15, 204–210 (2016). https://doi.org/10.1039/c5pp00397k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00397k

Navigation