Skip to main content

Advertisement

Log in

Photosensitized degradation kinetics of trace halogenated contaminants in natural waters using membrane introduction mass spectrometry as an in situ reaction monitor

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photochemically mediated dechlorination of polyhalogenated compounds represents a potential decontamination strategy and a relevant environmental process in chemically reducing media. We report the UV irradiation of natural and artificial waters containing natural dissolved organic matter to effect the photo-sensitized degradation of chlorinated organic compounds, including tetrachloromethane, 1,1,1-tricloroethane, perchloroethene, 1,2-dibromo-3-chloropropane and chlorobenzene at trace (ppb) levels in aqueous solution. The degradation kinetics are followed in situ using membrane introduction mass spectrometry. By re-circulating the reaction mixture in a closed loop configuration over a semi-permeable hollow fiber polydimethylsiloxane membrane in a flow cell interface, volatile and semi-volatile compounds are continuously monitored using a quadrupole ion trap mass spectrometer. The time resolved quantitative information provides useful mechanistic insights, including kinetic data. Pseudo first-order rate constants for the degradation of contaminant mixtures in natural waters are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. G. Muir, P. H. Howard, Are there other persistent organic pollutants? A challenge for environmental chemists, Environ. Sci. Technol., 2006, 40, 7157–7166.

    Article  CAS  PubMed  Google Scholar 

  2. R. P. Schwarzenbach, P. M. Gschwend and D. M. Imboden, Environmental Organic Chemistry, Wiley, 2003.

    Google Scholar 

  3. J. H. He, W. P. Ela, E. A. Betterton, R. G. Arnold, A. E. Saez, Reductive dehalogenation of aqueous-phase chlorinated hydrocarbons in an electrochemical reactor, Ind. Eng. Chem. Res., 2004, 43, 7965–7974.

    Article  CAS  Google Scholar 

  4. P. K. Freeman, C. M. Haugen, Differential photohydrodehalogenation reactivity of bromobenzenes (1,2,4-tribromobenzene, 1,2,3,5-tetrabromobenzene) and pentachlorobenzene: Sunlight-based remediation, J. Chem. Technol. Biotechnol., 1998, 72, 45–49.

    Article  CAS  PubMed  Google Scholar 

  5. G. P. Curtis, M. Reinhard, Reductive dehalogenation of hexachloroethane, carbon tetrachloride, and bromoform by anthrahydroquinone disulfonate and humic acid, Environ. Sci. Technol., 1994, 28, 2393–2401.

    Article  CAS  PubMed  Google Scholar 

  6. J. Gan, Q. Wang, S. R. Yates, W. C. Koskinen, W. A. Jury, Dechlorination of chloroacetanilide herbicides by thiosulfate salts, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 5189–5194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. W. Zhang, L. Li, B. Z. Li, K. F. Lin, S. G. Lu, R. B. Fu, J. Zhu, X. H. Cui, Mechanism and pathway of tetrachloroethylene dechlorination by zero-valent iron with Cu or Cu/C, J. Environ. Eng., 2013, 139, 803–809.

    Article  CAS  Google Scholar 

  8. X. Lu and S. Yuan, Electrokinetic removal of chlorinated organic compounds, in Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater, John Wiley & Sons, Inc., 2009, pp. 219–234.

    Chapter  Google Scholar 

  9. J. A. Perlinger, J. Buschmann, W. Angst, R. P. Schwarzenbach, Iron porphyrin and mercaptojuglone mediated reduction of polyhalogenated methanes and ethanes in homogeneous aqueous solution, Environ. Sci. Technol., 1998, 32, 2431–2437.

    Article  CAS  Google Scholar 

  10. J. P. Aguer, C. Richard, F. Andreux, Effect of light on humic substances: Production of reactive species, Analusis, 1999, 27, 387–390.

    Article  CAS  Google Scholar 

  11. M. Lal, C. Schoneich, J. Monig, K. D. Asmus, Rate constants for the reactions of halogenated organic radicals, Int. J. Radiat. Biol., 1988, 54, 773–785.

    Article  CAS  PubMed  Google Scholar 

  12. A. Matsunaga, A. Yasuhara, Dechlorination of PCBs by electrochemical reduction with aromatic radical anion as mediator, Chemosphere, 2005, 58, 897–904.

    Article  CAS  PubMed  Google Scholar 

  13. E. A. Betterton, N. Hollan, R. G. Arnold, S. Gogosha, K. McKim, Z. J. Liu, Acetone-photosensitized reduction of carbon tetrachloride by 2-propanol in aqueous solution, Environ. Sci. Technol., 2000, 34, 1229–1233.

    Article  CAS  Google Scholar 

  14. H. Li, E. A. Betterton, R. G. Arnold, W. P. Ela, B. Barbaris, C. Grachane, Convenient new chemical actinometer based on aqueous acetone, 2-propanol, and carbon tetrachloride, Environ. Sci. Technol., 2005, 39, 2262–2266.

    Article  CAS  PubMed  Google Scholar 

  15. N. J. Turro, V. Ramamurthy and J. C. Scaiano, Principles of Molecular Photochemistry: An Introduction, University Science Books, 2009.

    Google Scholar 

  16. Y. P. Chin, P. L. Miller, L. Zeng, K. Cawley, L. Weavers, Photosensitized degradation of bisphenol A by dissolved organic matter, Environ. Sci. Technol., 2004, 38, 5888–5894.

    Article  CAS  PubMed  Google Scholar 

  17. E. C. Minor, M. M. Swenson, B. M. Mattson, A. R. Oyler, Structural characterization of dissolved organic matter: A review of current techniques for isolation and analysis, Environ. Sci.: Processes Impacts, 2014, 16, 2064–2079.

    Google Scholar 

  18. J. L. Weishaar, G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii, K. Mopper, Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon, Environ. Sci. Technol., 2003, 37, 4702–4708.

    Article  CAS  PubMed  Google Scholar 

  19. T. E. Thomas-Smith, N. V. Blough, Photoproduction of hydrated electron from constituents of natural waters, Environ. Sci. Technol., 2001, 35, 2721–2726.

    Article  CAS  PubMed  Google Scholar 

  20. R. G. Zepp, P. F. Schlotzhauer, R. M. Sink, Photosensitized transformations involving electronic-energy transfer in natural waters: Role of humic substances, Environ. Sci. Technol., 1985, 19, 74–81.

    Article  Google Scholar 

  21. S. H. Kang, W. Choi, Oxidative degradation of organic compounds using zero-valent iron in the presence of natural organic matter serving as an electron shuttle, Environ. Sci. Technol., 2008, 43, 878–883.

    Article  CAS  Google Scholar 

  22. F. M. Dunnivant, R. P. Schwarzenbach, D. L. Macalady, Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter, Environ. Sci. Technol., 1992, 26, 2133–2141.

    Article  CAS  Google Scholar 

  23. R. G. Zepp, A. M. Braun, J. Hoigne, J. A. Leenheer, Photoproduction of hydrated electrons from natural organic solutes in aquatic environments, Environ. Sci. Technol., 1987, 21, 485–490.

    Article  CAS  PubMed  Google Scholar 

  24. R. A. Ketola, T. Kotiaho, M. E. Cisper, T. M. Allen, Environmental applications of membrane introduction mass spectrometry, J. Mass Spectrom., 2002, 37, 457–476.

    Article  CAS  PubMed  Google Scholar 

  25. R. C. Johnson, R. G. Cooks, T. M. Allen, M. E. Cisper, P. H. Hemberger, Membrane introduction mass spectrometry: Trends and applications, Mass Spectrom. Rev., 2000, 19, 1–37.

    Article  CAS  PubMed  Google Scholar 

  26. N. G. Davey, E. T. Krogh, C. G. Gill, Membrane introduction mass spectrometry (MIMS), Trends Anal. Chem., 2011, 30, 1477–1485.

    Article  CAS  Google Scholar 

  27. M. A. LaPack, J. C. Tou, C. G. Enke, Membrane mass spectrometry for the direct trace analysis of volatile organic compounds in air and water, Anal. Chem., 1990, 62, 1265–1271.

    Article  CAS  Google Scholar 

  28. E. T. Krogh, C. G. Gill, Membrane introduction mass spectrometry (MIMS): A versatile tool for direct, real-time chemical measurements, J. Mass Spectrom., 2014, 49, 1205–1213.

    Article  CAS  PubMed  Google Scholar 

  29. J. T. Borges, R. Sparrapan, J. R. Guimaraes, M. N. Eberlin, R. Augusti, Chloroform formation by chlorination of aqueous algae suspensions: Online monitoring via membrane introduction mass spectrometry, J. Braz. Chem. Soc., 2008, 19, 950–955.

    Article  CAS  Google Scholar 

  30. F. R. Lauritsen, S. Gylling, Online monitoring of biological reactions at low parts-per-trillion levels by membrane inlet mass spectrometry, Anal. Chem., 1995, 67, 1418–1420.

    Article  CAS  Google Scholar 

  31. R. M. Alberici, M. A. Mendes, W. F. Jardim, M. N. Eberlin, Mass spectrometry on-line monitoring and MS2 product characterization of TiO2/UV photocatalytic degradation of chlorinated volatile organic compounds, J. Am. Soc. Mass Spectrom., 1998, 9, 1321–1327.

    Article  CAS  Google Scholar 

  32. K. Beckmann, J. Messinger, M. R. Badger, T. Wydrzynski, W. Hillier, On-line mass spectrometry: Membrane inlet sampling, Photosynth. Res., 2009, 102, 511–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. P. S. H. Wong, N. Srinivasan, N. Kasthurikrishnan, R. G. Cooks, J. A. Pincock, J. S. Grossert, On-line monitoring of the photolysis of benzyl acetate and 3,5-dimethoxybenzyl acetate by membrane introduction mass spectrometry, J. Org. Chem., 1996, 61, 6627–6632.

    Article  CAS  PubMed  Google Scholar 

  34. J. H. L. Nelson, D. A. Friesen, C. G. Gill, E. T. Krogh, On-line measurement of oxidative degradation kinetics for trace gasoline contaminants in aqueous solutions and natural water by membrane introduction tandem mass spectrometry, J. Environ. Sci. Health, Part A, 2010, 45, 1720–1731.

    Article  CAS  Google Scholar 

  35. R. Augusti, A. Dias, L. Rocha, R. Lago, Kinetics and mechanism of benzene derivative degradation with Fenton’s reagent in aqueous medium studied by MIMS, J. Phys. Chem. A, 1998, 102, 10723–10727.

    Article  CAS  Google Scholar 

  36. R. Rios, L. L. da Rocha, T. G. Vieira, R. M. Lago, R. Augusti, On-line monitoring by membrane introduction mass spectrometry of chlorination of organics in water: Mechanistic and kinetic aspects of chloroform formation, J. Mass Spectrom., 2000, 35, 618–624.

    Article  CAS  PubMed  Google Scholar 

  37. F. Soltermann, S. Canonica, U. von Gunten, Trichloramine reactions with nitrogenous and carbonaceous compounds: Kinetics, products and chloroform formation, Water Res., 2015, 71, 318–329.

    Article  CAS  PubMed  Google Scholar 

  38. M. Izadifard, 2012, personal communication.

    Google Scholar 

  39. D. W. Janes, C. J. Durning, D. M. van Pel, M. S. Lynch, C. G. Gill, E. T. Krogh, Modeling analyte permeation in cylindrical hollow fiber membrane introduction mass spectrometry, J. Membr. Sci., 2008, 325, 81–91.

    Article  CAS  Google Scholar 

  40. P. L. Miller, Y. P. Chin, Photoinduced degradation of carbaryl in a wetland surface water, J. Agric. Food Chem., 2002, 50, 6758–6765.

    Article  CAS  PubMed  Google Scholar 

  41. R. M. Cory, J. B. Cotner, K. McNeill, Quantifying interactions between singlet oxygen and aquatic fulvic acids, Environ. Sci. Technol., 2009, 43, 718–723.

    Article  CAS  PubMed  Google Scholar 

  42. U.S. Environmental Protection Agency, Basic Information about Regulated Drinking Water Contaminants and Indicators, 2015.

    Google Scholar 

  43. World Health Organization, Guidelines for Drinking-water Quality, Geneva, 4th edn, 2011.

    Google Scholar 

  44. U.S. Public Health Service: Agency for Toxic Substances and Disease Registry, Toxicological Profile for Chlorobenzene, Atlanta, GA, 1990.

    Google Scholar 

  45. J. H. Montgomery, Groundwater Chemicals Desk Reference, CRC Press, Boca Raton, 2007.

    Book  Google Scholar 

  46. J. M. Michael, Occurrence and Implications of Selected Chlorinated Solvents in Ground Water and Source Water in the United States and in Drinking Water in 12 Northeast and Mid-Atlantic States, 1993–2002, U.S. Geological Survey, Reston, Virginia, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik T. Krogh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Letourneau, D.R., Gill, C.G. & Krogh, E.T. Photosensitized degradation kinetics of trace halogenated contaminants in natural waters using membrane introduction mass spectrometry as an in situ reaction monitor. Photochem Photobiol Sci 14, 2108–2118 (2015). https://doi.org/10.1039/c5pp00286a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00286a

Navigation