Skip to main content
Log in

Photoactivated cyclases: In memoriam Masakatsu Watanabe

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. E. Bünning, M. Tazawa, Über die negativ-phototaktische Reaktion von Euglena, Arch. Mikrobiol., 1957, 27, 306–310.

    Article  Google Scholar 

  2. R.-K. Langner and T. t. Beech, Scott and Amundsen, Duel in the Ice, Haus Publishing, London, 2007, ISBN 978-971-905791-905708-905798.

    Google Scholar 

  3. M. Ahmad, A. R. Cashmore, HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor, Nature, 1993, 366, 162–166, DOI: 10.1038/366162a0.

    Article  CAS  Google Scholar 

  4. C. Darwin, The Power of Movements in Plants, Appleton, 1881.

    Google Scholar 

  5. J. M. Christie, et al, Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism, Science, 1998, 282, 1698–1701.

    Article  CAS  Google Scholar 

  6. E. Huala, et al, Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain, Science, 1997, 278, 2120–2123.

    Article  CAS  Google Scholar 

  7. M. Iseki, et al, A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis, Nature, 2002, 415, 1047–1051.

    Article  CAS  Google Scholar 

  8. W. Engelmann, Über Sauerstoffausscheidung von Pflanzenzellen im Mikrospektrum, Botanische Zeitung, 1882, 40, 419–426.

    Google Scholar 

  9. H. S. Jennings, Behaviour of lower organisms, Columbia University Press, NY, 1906.

    Book  Google Scholar 

  10. S. O. Mast, LIght and the Behavior of Organisms, Wiley, 1911, p. 109.

    Book  Google Scholar 

  11. E. Bünning, G. Schneiderhöhn, Über das Aktionsspektrum der phototaktischen Reaktionen von Euglena, Arch. Mikrobiol., 1956, 24, 80.

    Article  Google Scholar 

  12. M. Delbruck, W. Shropshire, Action and Transmission Spectra of Phycomyces, Plant Physiol., 1960, 35, 194–204.

    Article  CAS  Google Scholar 

  13. K. Bergman, et al., Phycomyces, Bacteriol. Rev., 1969, 33, 99–157.

    Article  CAS  Google Scholar 

  14. B. Diehn, Action Spectra of Phototactic Responses in Euglena, Biochim. Biophys. Acta, 1969, 177, 136–143.

    Article  CAS  Google Scholar 

  15. D. Presti, M. Delbrück, Photoreceptors for biosynthesis, energy storage and vision, Plant, Cell Environ., 1978, 1, 81–100.

    Article  Google Scholar 

  16. P. A. Benedetti, A. Checcucci, Paraflagellar body (PFB) pigments studied by fluorescence microscopy in Euglena gracilis, Plant Sci. Lett., 1975, 4, 47–51.

    Article  Google Scholar 

  17. E. Piccinni, M. Mammi, Motor apparatus of Euglena gracilis: ultrastructure of the basal portion of the flagellum and the paraflagallar body, Boll. Zool., 1978, 45, 405–414.

    Article  Google Scholar 

  18. L. Barsanti, V. Passarelli, P. L. Walne, P. Gualtieri, The photoreceptor protein of Euglena gracilis, FEBS Lett., 2000, 482, 247–251.

    Article  CAS  Google Scholar 

  19. D. R. Hochbaum, et al., All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins, Nat. Methods, 2014, 11, 825–833, DOI: 10.1038/Nmeth.3000.

    Article  CAS  Google Scholar 

  20. G. Rosati, F. Verni, L. Barsanti, V. Passarelli, P. Gualtieri, Ultrastructure of the apical zone of Euglena gracilis: photoreceptors and motor apparatus, Electron. Microsc. Rev., 1991, 4, 319–342.

    Article  CAS  Google Scholar 

  21. P. Zirak, A. Penzkofer, T. Mathes, P. Hegemann, Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents, Chem. Phys., 2009, 358, 111–122, DOI: 10.1016/J.Chemphys.2008.12.026.

    Article  CAS  Google Scholar 

  22. H. Shimada, K. Iba, K. Takamiya, Blue-Light Irradiation Reduces the Expression of Puf and Puc Operons of Rhodobacter-Sphaeroides under Semi-Aerobic Conditions., Plant Cell Physiol., 1992, 33, 471–475.

    CAS  Google Scholar 

  23. M. Gomelsky, S. Kaplan, appA, a novel gene encoding a trans-acting factor involved in the regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1, J. Bacteriol., 1995, 177, 4609–4618.

    Article  CAS  Google Scholar 

  24. M. Gomelsky, S. Kaplan, Molecular genetic analysis suggesting interactions between AppA and PpsR in regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1, J. Bacteriol., 1997, 179, 128–134.

    Article  CAS  Google Scholar 

  25. S. Braatsch, M. Gomelsky, S. Kuphal, G. Klug, A single flavoproteinAppA, integrates both redox and light signals in Rhodobacter sphaeroides, Mol. Microbiol., 2002, 45, 827–836.

    Article  CAS  Google Scholar 

  26. S. Masuda, C. E. Bauer, AppA is a blue light photoreceptor that antirepresses photosynthesis gene expression in Rhodobacter sphaeroides, Cell, 2002, 110, 613–623.

    Article  CAS  Google Scholar 

  27. M. Ntefidou, M. Iseki, M. Watanabe, M. Lebert, D. P. Hader, Photoactivated adenylyl cyclase controls phototaxis in the flagellate Euglena gracilis, Plant Physiol., 2003, 133, 1517–1521.

    Article  CAS  Google Scholar 

  28. S. Sontag, The Benefactor, Ferrer, Straus, Girous, NY, 1963.

    Google Scholar 

  29. L. Barsanti, et al., In vivo absorption spectra of the two stable states of the Euglena photoreceptor photocycle, Photochem. Photobiol., 2009, 85, 304–312, DOI: 10.1111/j.1751-1097.2008.00438.x.

    Article  CAS  Google Scholar 

  30. Y. Koumura, T. Suzuki, S. Yoshikawa, M. Watanabe, M. Iseki, The origin of photoactivated adenylyl cyclase (PAC), the Euglena blue-light receptor: phylogenetic analysis of orthologues of PAC subunits from several euglenoids and trypanosome-type adenylyl cyclases from Euglena gracilis, Photochem. Photobiol. Sci., 2004, 3, 580–586.

    Article  CAS  Google Scholar 

  31. M. H. Ryu, O. V. Moskvin, J. Siltberg-Liberles, M. Gomelsky, Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications, J. Biol. Chem., 2010, 285, 41501–41508, DOI: 10.1074/jbc.M110.177600.

    Article  CAS  Google Scholar 

  32. M. Stierl, et al., Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa, J. Biol. Chem., 2011, 286, 1181–1188, DOI: 10.1074/jbc.M110.185496.

    Article  CAS  Google Scholar 

  33. S. Raffelberg, et al., A LOV-domain-mediated blue-light-activated adenylate (adenylyl) cyclase from the cyanobacterium Microcoleus chthonoplastes PCC 7420, Biochem. J., 2013, 455, 359–365, DOI: 10.1042/BJ20130637.

    Article  CAS  Google Scholar 

  34. R. J. De Marco, A. H. Groneberg, C. M. Yeh, L. A. Castillo Ramirez, S. Ryu, Optogenetic elevation of endogenous glucocorticoid level in larval zebrafish, Front. Neural Circuits, 2013, 7, 82, DOI: 10.3389/fncir.2013.00082.

    Article  Google Scholar 

  35. Z. H. Chen, S. Raffelberg, A. Losi, P. Schaap, W. Gartner, A cyanobacterial light activated adenylyl cyclase partially restores development of a Dictyostelium discoideum, adenylyl cyclase a null mutant, J. Biotechnol., 2014, 191, 246–249, DOI: 10.1016/J.Jbiotec.2014.08.008.

    Article  CAS  Google Scholar 

  36. S. Schroder-Lang, et al., Fast manipulation of cellular cAMP level by light in vivo, Nat. Methods, 2007, 4, 39–42, DOI: 10.1038/Nmeth975.

    Article  Google Scholar 

  37. V. Jansen, et al., Controlling Fertilization and cAMP Signaling in Sperm Flagella by Optogenetics, e-Life, 2015, 4, UNSP.

  38. M. Watanabe, et al., Design and Performance of the Okazaki Large Spectrograph for Photobiological Research, Photochem. Photobiol., 1982, 36, 491–498, DOI: 10.1111/J.1751-1097.1982.Tb04407.X.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegemann, P. Photoactivated cyclases: In memoriam Masakatsu Watanabe. Photochem Photobiol Sci 14, 1781–1786 (2015). https://doi.org/10.1039/c5pp00233h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00233h

Navigation