Skip to main content
Log in

Solvent dependent photosensitized singlet oxygen production from an Ir(iii) complex: pointing to problems in studies of singlet-oxygen-mediated cell death

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A cationic cyclometallated Ir(iii) complex with 1,10-phenanthroline and 2-phenylpyridine ligands photosensitizes the production of singlet oxygen, O2(a1Δg), with yields that depend appreciably on the solvent. In water, the quantum yield of photosensitized O2(a1Δg) production is small (ϕΔ = 0.036 ± 0.008), whereas in less polar solvents, the quantum yield is much larger (ϕΔ = 0.54 ± 0.05 in octan-1-ol). A solvent effect on ϕΔ of this magnitude is rarely observed and, in this case, is attributed to charge-transfer-mediated processes of non-radiative excited state deactivation that are more pronounced in polar solvents and that kinetically compete with energy transfer to produce O2(a1Δg). A key component of this non-radiative deactivation process, electronic-to-vibrational energy transfer, is also manifested in pronounced H2O/D2O isotope effects that indicate appreciable coupling between the Ir(iii) complex and water. This Ir(iii) complex is readily incorporated into HeLa cells and, upon irradiation, is cytotoxic as a consequence of the O2(a1Δg) thus produced. The data reported herein point to a pervasive problem in mechanistic studies of photosensitized O2(a1Δg)-mediated cell death: care must be exercised when interpreting the effective cytotoxicity of O2(a1Δg) photosensitizers whose photophysical properties depend strongly on the local environment. Specifically, the photophysics of the sensitizer in bulk solutions may not accurately reflect its intracellular behavior, and the control and quantification of the O2(a1Δg) “dose” can be difficult in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Clennan, A. Pace, Advances in Singlet Oxygen Chemistry, Tetrahedron, 2005, 61, 6665–6691.

    Article  CAS  Google Scholar 

  2. P. R. Ogilby, Singlet Oxygen: There is Indeed Something New Under the Sun, Chem. Soc. Rev., 2010, 39, 3181–3209.

    Article  CAS  PubMed  Google Scholar 

  3. L.-O. Klotz, K.-D. Kröncke, H. Sies, Singlet Oxygen-Induced Signaling Effects in Mammalian Cells, Photochem. Photobiol. Sci., 2003, 2, 88–94.

    Article  CAS  PubMed  Google Scholar 

  4. R. Bonnett, Chemical Aspects of Photodynamic Therapy, Gordon and Breach Science Publishers, Amsterdam, 2000.

    Book  Google Scholar 

  5. R. W. Redmond, I. E. Kochevar, Spatially-Resolved Cellular Responses to Singlet Oxygen, Photochem. Photobiol., 2006, 82, 1178–1186.

    CAS  PubMed  Google Scholar 

  6. D. Phillips, Light relief: photochemistry and medicine, Photochem. Photobiol. Sci., 2010, 9, 1589–1596.

    Article  CAS  PubMed  Google Scholar 

  7. A. Blázquez-Castro, T. Breitenbach, P. R. Ogilby, Singlet oxygen and ROS in a new light: low-dose subcellular photodynamic treatment enhances proliferation at the single cell level, Photochem. Photobiol. Sci., 2014, 13, 1235–1240.

    Article  PubMed  CAS  Google Scholar 

  8. C. Schweitzer, R. Schmidt, Physical Mechanisms of Generation and Deactivation of Singlet Oxygen, Chem. Rev., 2003, 103, 1685–1757.

    Article  CAS  PubMed  Google Scholar 

  9. N. Rubio, S. P. Fleury, R. W. Redmond, Spatial and Temporal Dynamics of in vitro Photodynamic Cell Killing: Extracellular Hydrogen Peroxide Mediates Neighboring Cell Death, Photochem. Photobiol. Sci., 2009, 8, 457–464.

    Article  CAS  PubMed  Google Scholar 

  10. T. Breitenbach, P. R. Ogilby, J. D. C. Lambert, Effect of Intracellular Photosensitized Singlet Oxygen Production on the Electrophysiological Properties of Cultured Rat Hippocampal Neurons, Photochem. Photobiol. Sci., 2010, 9, 1621–1633.

    Article  CAS  PubMed  Google Scholar 

  11. F. M. Pimenta, R. L. Jensen, L. Holmegaard, T. V. Esipova, M. Westberg, T. Breitenbach, P. R. Ogilby, Singlet-Oxygen-Mediated Cell Death Using Spatially-Localized Two-Photon Excitation of an Extracellular Sensitizer, J. Phys. Chem. B, 2012, 116, 10234–10246.

    Article  CAS  PubMed  Google Scholar 

  12. A. Gollmer, F. Besostri, T. Breitenbach, P. R. Ogilby, Spatially resolved two-photon irradiation of an intracellular singlet oxygen photosensitizer: Correlating cell response to the site of localized irradiation, Free Radical Res., 2013, 47, 718–730.

    Article  CAS  Google Scholar 

  13. R. Schmidt, C. Tanielian, R. Dunsbach, C. Wolff, Phenalenone, a Universal Reference Compound for the Determination of Quantum Yields of Singlet Oxygen Sensitization, J. Photochem. Photobiol., A, 1994, 79, 11–17.

    Article  CAS  Google Scholar 

  14. E. Oliveros, P. Suardi-Murasecco, T. Aminian-Saghafi, A. M. Braun, 1H-Phenalen-1-one: Photophysical Properties and Singlet Oxygen Production, Helv. Chim. Acta, 1991, 74, 79–90.

    Article  CAS  Google Scholar 

  15. C. Marti, O. Jürgens, O. Cuenca, M. Casals, S. Nonell, Aromatic Ketones as Standards for Singlet Molecular Oxygen O2(1Δg) Photosensitization. Time-Resolved Photoacoustic and Near-IR Emission Studies, J. Photochem. Photobiol., A, 1996, 97, 11–18.

    Article  CAS  Google Scholar 

  16. F. Wilkinson, W. P. Helman, A. B. Ross, Quantum Yields for the Photosensitized Formation of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution, J. Phys. Chem. Ref. Data, 1993, 22, 113–262.

    Article  CAS  Google Scholar 

  17. P.-G. Jensen, J. Arnbjerg, L. P. Tolbod, R. Toftegaard, P. R. Ogilby, Influence of an Intermolecular Charge-Transfer State on Excited-State Relaxation Dynamics: Solvent Effect on the Methylnaphthalene-Oxygen System and its Significance for Singlet Oxygen Production, J. Phys. Chem. A, 2009, 113, 9965–9973.

    Article  CAS  PubMed  Google Scholar 

  18. E. Alarcon, A. M. Edwards, A. Aspee, F. E. Moran, C. D. Borsarelli, E. A. Lissi, D. Gonzalez-Nilo, H. Poblete, J. C. Scaiano, Photophysics and photochemistry of dyes bound to human serum albumin are determined by the dye localization, Photochem. Photobiol. Sci., 2010, 9, 93–102.

    Article  CAS  PubMed  Google Scholar 

  19. M. Westberg, L. Holmegaard, F. M. Pimenta, M. Etzerodt, P. R. Ogilby, Rational Design of an Efficient, Genetically Encodable, Protein-Encased Singlet Oxygen Photosensitizer, J. Am. Chem. Soc., 2015, 137, 1632–1642.

    Article  CAS  PubMed  Google Scholar 

  20. J. Arnbjerg, M. Johnsen, P. K. Frederiksen, S. E. Braslavsky, P. R. Ogilby, Two-Photon Photosensitized Production of Singlet Oxygen: Optical and Optoacoustic Characterization of Absolute Two-Photon Absorption Cross Sections for Standard Sensitizers in Different Solvents, J. Phys. Chem. A, 2006, 110, 7375–7385.

    Article  CAS  PubMed  Google Scholar 

  21. J. Arnbjerg, M. J. Paterson, C. B. Nielsen, M. Jørgensen, O. Christiansen, P. R. Ogilby, One- and Two-Photon Photosensitized Singlet Oxygen Production: Characterization of Aromatic Ketones as Sensitizer Standards, J. Phys. Chem. A, 2007, 111, 5756–5767.

    Article  CAS  PubMed  Google Scholar 

  22. C. B. Nielsen, J. Arnbjerg, M. Johnsen, M. Jørgensen, P. R. Ogilby, Molecular Tuning of Phenylene-Vinylene Derivatives for Two-Photon Photosensitized Singlet Oxygen Production, J. Org. Chem., 2009, 74, 9094–9104.

    Article  CAS  PubMed  Google Scholar 

  23. M. Johnsen, P. R. Ogilby, Effect of Solvent on Two-Photon Absorption by Vinyl Benzene Derivatives, J. Phys. Chem. A, 2008, 112, 7831–7839.

    Article  CAS  PubMed  Google Scholar 

  24. D. Hršak, L. Holmegaard, A. S. Poulsen, N. H. List, J. Kongsted, M. P. Denofrio, R. Erra-Balsells, F. M. Cabrerizo, O. Christiansen, P. R. Ogilby, Experimental and computational study of solvent effects on one- and two-photon absorption spectra of chlorinated harmines, Phys. Chem. Chem. Phys., 2015, 17, 12090–12099.

    Article  PubMed  CAS  Google Scholar 

  25. B. W. Pedersen, T. Breitenbach, R. W. Redmond, P. R. Ogilby, Two-photon irradiation of an intracellular singlet oxygen photosensitizer: achieving localized subcellular excitation in spatially-resolved experiments, Free Radical Res., 2010, 44, 1383–1397.

    Article  CAS  Google Scholar 

  26. T. Breitenbach, M. K. Kuimova, P. Gbur, S. Hatz, N. B. Schack, B. W. Pedersen, J. D. C. Lambert, L. Poulsen, P. R. Ogilby, Photosensitized Production of Singlet Oxygen: Spatially-Resolved Optical Studies in Single Cells, Photochem. Photobiol. Sci., 2009, 8, 442–452.

    CAS  PubMed  Google Scholar 

  27. J. N. Demas, G. A. Crosby, The Measurement of Photoluminescence Quantum Yields. A Review, J. Phys. Chem., 1971, 75, 991–1024.

    Article  Google Scholar 

  28. R. D. Scurlock, S. Nonell, S. E. Braslavsky, P. R. Ogilby, Effect of Solvent on the Radiative Decay of Singlet Molecular Oxygen (a1Δg), J. Phys. Chem., 1995, 99, 3521–3526.

    Article  CAS  Google Scholar 

  29. N. S. Makarov, M. Drobizhev, A. Rebane, Two-photon absorption standards in the 550–1600 nm excitation wavelength range, Opt. Express, 2008, 16, 4029–4047.

    Article  CAS  PubMed  Google Scholar 

  30. W.-C. Sun, K. R. Gee, D. H. Klaubert, R. P. Haugland, Synthesis of Fluorinated Fluoresceins, J. Org. Chem., 1997, 62, 6469–6475.

    Article  CAS  Google Scholar 

  31. E. Skovsen, J. W. Snyder, P. R. Ogilby, Two-photon singlet oxygen microscopy: the challenges of working with single cells, Photochem. Photobiol., 2006, 82, 1187–1197.

    Article  CAS  PubMed  Google Scholar 

  32. R. V. Kiran, C. F. Hogan, B. D. James, D. J. D. Wilson, Photophysical and Electrochemical Properties of Phenanthroline-Based Bis-cyclometallated Iridium Complexes in Aqueous and Organic Media, Eur. J. Inorg. Chem., 2011, 4816–4825.

    Google Scholar 

  33. S. Nonell, M. Gonzalez, F. R. Trull, 1H-Phenalen-1-one-2-sulfonic acid: An Extremely Efficient Singlet Molecular Oxygen Sensitizer for Aqueous Media, Afinidad, 1993, 448, 445–450.

    Google Scholar 

  34. S. Hatz, J. D. C. Lambert, P. R. Ogilby, Measuring the Lifetime of Singlet Oxygen in a Single Cell: Addressing the Issue of Cell Viability, Photochem. Photobiol. Sci., 2007, 6, 1106–1116.

    Article  CAS  PubMed  Google Scholar 

  35. M. P. Denofrio, C. Lorente, T. Breitenbach, S. Hatz, F. M. Cabrerizo, A. H. Thomas, P. R. Ogilby, Photodynamic Effects of Pterin on HeLa Cells, Photochem. Photobiol., 2011, 87, 862–866.

    Article  CAS  PubMed  Google Scholar 

  36. P. Suppan and N. Ghoneim, Solvatochromism, The Royal Society of Chemistry, Cambridge, 1997.

    Google Scholar 

  37. J. Li, P. I. Djurovich, B. D. Alleyne, M. Yousufuddin, N. N. Ho, J. C. Thomas, J. C. Peters, R. Bau, M. E. Thompsen, Synthetic Control of Excited-State Properties in Cyclometalated Ir(iii) Complexes Using Ancillary Ligands, Inorg. Chem., 2005, 44, 1713–1727.

    Article  CAS  PubMed  Google Scholar 

  38. J. Van Houten, R. J. Watts, The Effect of Ligand and Solvent Deuteration on the Excited State Properties of the Tris(2,2′-bipyridyl)ruthenium(ii) Ion in Aqueous Solution. Evidence for Electron Transfer to Solvent, J. Am. Chem. Soc., 1975, 97, 3843–3844.

    Article  Google Scholar 

  39. R. Sriram, M. Z. Hoffman, Solvent Isotope Effect on the Photophysics of Ru(bpy)32+ and Ru(phen)32+ in Aqueous Solution at Room Temperature, Chem. Phys. Lett., 1982, 85, 572–575.

    Article  CAS  Google Scholar 

  40. W. R. Cherry, L. J. Henderson, Relaxation Processes of Electronically Excited States in Polypyridine Ruthenium Complexes, Inorg. Chem., 1984, 23, 983–986.

    Article  CAS  Google Scholar 

  41. A. Masuda, Y. Kaizu, Specific Role of Water in Radiationless Transition from the Triplet MLCT States of Tris(polypyridine) Complexes of Osmium(ii), Inorg. Chem., 1998, 37, 3371–3375.

    Article  CAS  Google Scholar 

  42. A. A. Abdel-Shafi, M. D. Ward, R. Schmidt, Mechanism of quenching by oxygen of the excited states of ruthenium(ii) complexes in aqueous media. Solvent isotope effect and photosensitized generation of singlet oxygen, O2(1Δg), by [Ru(diimine)(CN)4]2− complex ions, Dalton Trans., 2007, 2517–2527.

    Google Scholar 

  43. F. Wilkinson, W. P. Helman, A. B. Ross, Rate Constants for the Decay and Reactions of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. An Expanded and Revised Compilation, J. Phys. Chem. Ref. Data, 1995, 24, 663–1021.

    Article  CAS  Google Scholar 

  44. S. Takizawa, R. Aboshi, S. Murata, Photooxidation of 1,5-dihydroxynaphthalene with iridium complexes as singlet oxygen sensitizers, Photochem. Photobiol. Sci., 2011, 10, 895–903.

    Article  CAS  PubMed  Google Scholar 

  45. P. I. Djurovich, D. Murphy, M. E. Thompsen, B. Hernandez, R. Gao, P. L. Hunt, M. Selke, Cyclometalated iridium and platinum complexes as singlert oxygen photosensitizers: quantum yields, quenching rates and correlation with electronic structures, Dalton Trans., 2007, 3763–3770.

    Google Scholar 

  46. L. Flamigni, A. Barbieri, C. Sabatini, B. Ventura, F. Barigelletti, Photochemistry and Photophysics of Coordination Compounds: Iridium, Top. Curr. Chem., 2007, 281, 143–203.

    Article  CAS  Google Scholar 

  47. Y. You, W. Nam, Photofunctional triplet excited states of cyclometalated Ir(iii) complexes: beyond electroluminescence, Chem. Soc. Rev., 2012, 41, 7061–7084.

    Article  CAS  PubMed  Google Scholar 

  48. R. Gao, D. G. Ho, B. Hernandez, M. Selke, D. Murphy, P. I. Djurovich, M. E. Thompsen, Bis-cyclometalated Ir(iii) Complexes as Efficient Singlet Oxygen Sensitizers, J. Am. Chem. Soc., 2002, 124, 14828–14829.

    Article  CAS  PubMed  Google Scholar 

  49. S. P.-Y. Li, C. T.-S. Lau, M.-W. Louie, Y.-W. Lam, S.-H. Cheng, K. K.-W. Lo, Mitochondria-targeting cyclometalated iridium(iii)-PEG complexes with tunable photodynamic activity, Biomaterials, 2013, 34, 7519–7532.

    Article  CAS  PubMed  Google Scholar 

  50. D. Ashen-Garry, M. Selke, Singlet Oxygen Generation by Cyclometalated Complexes and Applications, Photochem. Photobiol., 2014, 90, 257–274.

    Article  CAS  PubMed  Google Scholar 

  51. A. A. Abdel-Shafi, D. R. Worrall, A. Y. Ershov, Photosensitized generation of singlet oxygen from ruthenium(ii) and osmium(ii) bipyridyl complexes, Dalton Trans., 2004, 30–36.

    Google Scholar 

  52. D. Garcia-Fresnadillo, Y. Georgiadou, G. Orellana, A. M. Braun, E. Oliveros, Singlet Oxygen Production by Ruthenium(ii) Complexes Containing Polyazaheterocyclic Ligands in Methanol and Water, Helv. Chim. Acta, 1996, 79, 1222–1238.

    Article  CAS  Google Scholar 

  53. R. M. Edkins, S. L. Bettington, A. E. Goeta, A. Beeby, Two-photon spectroscopy of cyclometalated iridium complexes, Dalton Trans., 2011, 40, 12765–12770.

    Article  CAS  PubMed  Google Scholar 

  54. L. S. Natrajan, A. Toulmin, A. Chew, S. W. Magennis, Two-photon luminescence from polar bis-terpyridyl-stilbene derivatives of Ir(iii) and Ru(ii), Dalton Trans., 2010, 39, 10837–10846.

    Article  CAS  PubMed  Google Scholar 

  55. M. Pawlicki, H. A. Collins, R. G. Denning, H. L. Anderson, Two-Photon Absorption and the Design of Two-Photon Dyes, Angew. Chem., Int. Ed., 2009, 48, 3244–3266.

    Article  CAS  Google Scholar 

  56. R. Cao, J. Jia, X. Ma, M. Zhou, H. Fei, Membrane Localized Iridium(iii) Complex Induces Endoplasmic Reticulum Stress and Mitochondria-Mediated Apoptosis in Human Cancer Cells, J. Med. Chem., 2013, 56, 3636–3644.

    Article  CAS  PubMed  Google Scholar 

  57. K. K.-W. Lo, K. Y. Zhang, Iridium(iii) complexes as therapeutic and bioimaging reagents for cellular applications, RSC Adv., 2012, 2, 12069–12083.

    Article  CAS  Google Scholar 

  58. R. P. Haugland, Handbook of Fluorescent Probes and Research Products, Molecular Probes, Inc., Eugene, OR, 2002.

    Google Scholar 

  59. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, Molecular Biology of the Cell, Garland Science, New York, 2002.

    Google Scholar 

  60. L. V. Johnson, M. L. Walsh, L. B. Chen, Localization of Mitochondria in Living Cells with Rhodamine 123, Proc. Natl. Acad. Sci. U. S. A., 1980, 77, 990–994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. D. Kessel, Correlation between subcellular localization and photodynamic therapy, J. Porphyrins Phthalocyanines, 2004, 8, 1009–1014.

    Article  CAS  Google Scholar 

  62. E. F. Gudgin Dickson, J. C. Kennedy and R. H. Pottier, Photodynamic Therapy using 5-Aminolevulinic Acid-Induced Protoporphyrin IX in Photodynamic Therapy, ed. T. Patrice, Royal Society of Chemistry, Cambridge, 2003, pp. 81–103.

  63. J. M. Fernandez, M. D. Bilgin, L. I. Grossweiner, Singlet oxygen generation by photodynamic agents, J. Photochem. Photobiol., B, 1997, 37, 131–140.

    Article  CAS  Google Scholar 

  64. R. W. Redmond, J. N. Gamlin, A compilation of singlet oxygen yields from biologically relevant molecules, Photochem. Photobiol., 1999, 70, 391–475.

    Article  CAS  PubMed  Google Scholar 

  65. G. I. Lozovaya, Z. Masinovsky, A. A. Sivash, Protoporphyrin IX as a Possible Ancient Photosensitizer: Spectral and Photochemical Studies, Origins Life Evol. Biospheres, 1990, 20, 321–330.

    Article  CAS  Google Scholar 

  66. J. Squier, M. Müller, High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging, Rev. Sci. Instrum., 2001, 72, 2855–2867.

    Article  CAS  Google Scholar 

  67. B. W. Pedersen, L. E. Sinks, T. Breitenbach, N. B. Schack, S. A. Vinogradov, P. R. Ogilby, Single Cell Responses to Spatially-Controlled Photosensitized Production of Extracellular Singlet Oxygen, Photochem. Photobiol., 2011, 87, 1077–1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. G. Häcker, The morphology of apoptosis, Cell Tissue Res., 2000, 301, 5–17.

    Article  PubMed  Google Scholar 

  69. S. Rello, J. C. Stockert, V. Moreno, A. Gámez, M. Pacheco, A. Juarranz, M. Cañete, A. Villanueva, Morphological criteria to distinguish cell death induced by apoptotic and necrotic treatments, Apoptosis, 2005, 10, 201–208.

    Article  CAS  PubMed  Google Scholar 

  70. M. K. Kuimova, G. Yahioglu, P. R. Ogilby, Singlet Oxygen in a Cell: Spatially Dependent Lifetimes and Quenching Rate Constants, J. Am. Chem. Soc., 2009, 131, 332–340.

    Article  CAS  PubMed  Google Scholar 

  71. J. Torra, A. Burgos-Caminal, S. Endres, M. Wingen, T. Drepper, T. Gensch, R. Ruiz-González, S. Nonell, Singlet oxygen photosensitization by the fluoprescent protein Pp2FbFP L30M, a novel derivative of Pseudomonas putida flavin-binding Pp2FbFP, Photochem. Photobiol. Sci., 2015, 14, 280–287.

    Article  CAS  PubMed  Google Scholar 

  72. M. Bregnhøj, A. Blázquez-Castro, M. Westberg, T. Breitenbach, P. R. Ogilby, Direct 765 nm Optical Exciation of Molecular Oxygen in Solution and in Single Mammalian Cells, J. Phys. Chem. B, 2015, 119, 5422–5429.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Ogilby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takizawa, Sy., Breitenbach, T., Westberg, M. et al. Solvent dependent photosensitized singlet oxygen production from an Ir(iii) complex: pointing to problems in studies of singlet-oxygen-mediated cell death. Photochem Photobiol Sci 14, 1831–1843 (2015). https://doi.org/10.1039/c5pp00230c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00230c

Navigation