Skip to main content
Log in

Properties and evolution of emission in molecular aggregates of a perylene ammonium derivative in polymer matrices

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Size-dependent fluorescent properties of aggregates of a perylene ammonium derivative (PeryAm) were studied by steady-state and time-resolved spectroscopic methods. Quantitative analyses of aggregated states in aqueous solution indicated that the aggregation proceeded through dimer units of PeryAm. The fluorescence of the aggregate in the PVA film prepared from the aqueous solution continuously redshifted with an increase in the concentration of PeryAm in the mother liquor while keeping the absorption spectra in almost the same band shapes. Fluorescence anisotropy values of aggregates in the PVA film were dependent on the monitoring wavelength, and time profiles of the fluorescence at longer wavelengths showed a rapid increase just after the pulsed excitation. These results indicated efficient energy transfer to the stable sites in aggregates. Fluorescence microscopy images showed that aggregates were segregated in the PVA film and the color of the emission was dependent on the size of the aggregate. Under the steady-state irradiation, the emission color of the aggregates changed from green to yellow, which was attributable to the association of a small cluster of PeryAm with the green emission resulting in the formation of yellow-colored aggregates. On the basis of these results, we have discussed the mechanisms and dynamics of the aggregation and size-dependent emission in aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer and A. Schenning, Chem. Rev., 2005, 105, 1491.

    Article  CAS  Google Scholar 

  2. M. Schwoerer and H. C. Wolf, Organic Molecular Solids, Wiley-VCH, Weinheim, Germany, 2007.

    Google Scholar 

  3. F. Würthner, Z. J. Chen, V. Dehm and V. Stepanenko, Chem. Commun., 2006, 1188.

    Google Scholar 

  4. J. M. Lim, P. Kim, M.-C. Yoon, J. Sung, V. Dehm, Z. Chen, F. Würthner and D. Kim, Chem. Sci., 2013, 4, 388.

    Article  CAS  Google Scholar 

  5. H. Tachikawa and L. R. Faulkner, Chem. Phys. Lett., 1976, 39, 436.

    Article  CAS  Google Scholar 

  6. J. C. D. Verhagen, M. van Zandvoort, J. M. Vroom, L. B. A. Johansson and G. vanGinkel, J. Phys. Chem. B, 1997, 101, 10568.

    Article  CAS  Google Scholar 

  7. C. Spies and R. Gehrke, J. Phys. Chem. A, 2002, 106, 5348.

    Article  CAS  Google Scholar 

  8. Y. Amao and I. Okura, Bull. Chem. Soc. Jpn., 2002, 75, 389.

    Article  CAS  Google Scholar 

  9. B. R. Crenshaw and C. Weder, Adv. Mater., 2005, 17, 1471.

    Article  CAS  Google Scholar 

  10. T. T. Vu, M. Dvorko, E. Y. Schmidt, J. F. Audibert, P. Retailleau, B. A. Trofimov, R. B. Pansu, G. Clavier and R. Meallet-Renault, J. Phys. Chem. C, 2013, 117, 5373.

    Article  CAS  Google Scholar 

  11. F. Ito, T. Kakiuchi, T. Sakano, T. Nagamura, Phys. Chem. Chem. Phys., 2010, 12, 10923.

    Article  CAS  Google Scholar 

  12. F. Ito, Y. Ugachi and T. Sasaki, Chem. Lett., 2012, 41, 282.

    Article  CAS  Google Scholar 

  13. G. V. Zakharova, A. R. Kombaev and K. Chibisov, High Energy Chem., 2004, 38, 180.

    Article  CAS  Google Scholar 

  14. S. Sreeja, S. Sreedhanya, N. Smijesh, R. Philip and C. I. Muneera, J. Mater. Chem. C, 2013, 1, 3851.

    Article  CAS  Google Scholar 

  15. F. Ito, Y. Kogasaka and K. Yamamoto, J. Phys. Chem. B, 2013, 117, 3675.

    Article  CAS  Google Scholar 

  16. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, Singapore, 2006.

    Book  Google Scholar 

  17. Y. Nagasawa, T. Itoh, M. Yasuda, Y. Ishibashi, S. Ito and H. Miyasaka, J. Phys. Chem. B, 2008, 112, 15758.

    Article  CAS  Google Scholar 

  18. J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London, 1970.

    Google Scholar 

  19. H. Kasai, H. S. Nalwa, H. Oikawa, S. Okada, H. Matsuda, N. Minami, A. Kakuta, K. Ono, A. Mukoh and H. Nakanishi, Jpn. J. Appl. Phys., Part 2, 1992, 31, L1132.

    Article  CAS  Google Scholar 

  20. H. Kasai, H. Kamatani, Y. Yoshikawa, S. Okada, H. Oikawa, A. Watanabe, O. Itoh and H. Nakanishi, Chem. Lett., 1997, 1181.

    Google Scholar 

  21. T. Asahi, T. Sugiyama and H. Masuhara, Acc. Chem. Res., 2008, 41, 1790.

    Article  CAS  Google Scholar 

  22. T. Asahi, H. Matsune, K. Yamashita, H. Masuhara, H. Kasai and H. Nakanishi, Pol. J. Chem., 2008, 82, 687.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyuki Ito.

Additional information

Electronic supplementary information (ESI) available: Estimation of monomer-dimer equilibrium, fluorescence anisotropy spectra and fluorescence time profiles. See DOI: 10.1039/c5pp00196j

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, F., Sato, H., Ugachi, Y. et al. Properties and evolution of emission in molecular aggregates of a perylene ammonium derivative in polymer matrices. Photochem Photobiol Sci 14, 1896–1902 (2015). https://doi.org/10.1039/c5pp00196j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00196j

Navigation