Skip to main content
Log in

Phospholipid scrambling by rhodopsin

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Rhodopsin has been intensively characterized in its role as a visual pigment and G protein-coupled receptor responsible for dim-light vision. We recently discovered that it also functions as an ATP-independent phospholipid scramblase: when reconstituted into large unilamellar vesicles, rhodopsin accelerates the normally sluggish transbilayer translocation of common phospholipids by more than 1000-fold, to rates in excess of 10?000 phospholipids transported per rhodopsin per second. Here we summarize the work leading to this discovery and speculate on the mechanism by which rhodopsin scrambles phospholipids. We also present a hypothesis that rhodopsin’s scramblase activity is necessary for the function of the ABC transporter ABCA4 that is responsible for mitigating the toxic accumulation of 11-cis-retinal and bis-retinoids in the retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Quazi, S. Lenevich, R. S. Molday, ABCA4 is an N-retinylidene-phosphatidylethanolamine and phosphatidylethanolamine importer, Nat. Commun., 2012, 3, 925.

    Article  PubMed  CAS  Google Scholar 

  2. J. A. Coleman, M. C. Kwok, R. S. Molday, Localization, purification, and functional reconstitution of the P4-ATPase Atp8a2, a phosphatidylserine flippase in photoreceptor disc membranes, J. Biol. Chem., 2009, 284, 32670–32679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. G. Wu, W. L. Hubbell, Phospholipid asymmetry and transmembrane diffusion in photoreceptor disc membranes, Biochemistry, 1993, 32, 879–888.

    Article  CAS  PubMed  Google Scholar 

  4. E. Hessel, A. Herrmann, P. Muller, P. P. Schnetkamp, K. P. Hofmann, The transbilayer distribution of phospholipids in disc membranes is a dynamic equilibrium evidence for rapid flip and flop movement, Eur. J. Biochem., 2000, 267, 1473–1483.

    Article  CAS  PubMed  Google Scholar 

  5. E. Hessel, P. Muller, A. Herrmann, K. P. Hofmann, Light-induced reorganization of phospholipids in rod disc membranes, J. Biol. Chem., 2001, 276, 2538–2543.

    Article  CAS  PubMed  Google Scholar 

  6. I. Menon, T. Huber, S. Sanyal, S. Banerjee, P. Barre, S. Canis, J. D. Warren, J. Hwa, T. P. Sakmar, A. K. Menon, Opsin is a phospholipid flippase, Curr. Biol., 2011, 21, 149–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. A. Goren, T. Morizumi, I. Menon, J. S. Joseph, J. S. Dittman, V. Cherezov, R. C. Stevens, O. P. Ernst, A. K. Menon, Constitutive phospholipid scramblase activity of a G protein-coupled receptor, Nat. Commun., 2014, 5, 5115.

    Article  CAS  PubMed  Google Scholar 

  8. O. P. Ernst, D. T. Lodowski, M. Elstner, P. Hegemann, L. S. Brown, H. Kandori, Microbial and animal rhodopsins: structures, functions, and molecular mechanisms, Chem. Rev., 2014, 114, 126–163.

    Article  CAS  PubMed  Google Scholar 

  9. S. Sanyal, A. K. Menon, Flipping lipids: why an’ what’s the reason for?, ACS Chem. Biol., 2009, 4, 895–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. E. M. Bevers, P. L. Williamson, Phospholipid scramblase: an update, FEBS Lett., 2010, 584, 2724–2730.

    Article  CAS  PubMed  Google Scholar 

  11. P. A. Leventis, S. Grinstein, The distribution and function of phosphatidylserine in cellular membranes, Annu. Rev. Biophys., 2010, 39, 407–427.

    Article  CAS  PubMed  Google Scholar 

  12. T. Mohammadi, V. van Dam, R. Sijbrandi, T. Vernet, A. Zapun, A. Bouhss, M. Diepeveen-de Bruin, M. Nguyen-Disteche, B. de Kruijff, E. Breukink, Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane, EMBO J., 2011, 30, 1425–1432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J. Helenius, D. T. Ng, C. L. Marolda, P. Walter, M. A. Valvano, M. Aebi, Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein, Nature, 2002, 415, 447–450.

    Article  CAS  PubMed  Google Scholar 

  14. P. D. Rick, K. Barr, K. Sankaran, J. Kajimura, J. S. Rush, C. J. Waechter, Evidence that the wzxE gene of Escherichia coli K-12 encodes a protein involved in the transbilayer movement of a trisaccharide-lipid intermediate in the assembly of enterobacterial common antigen, J. Biol. Chem., 2003, 278, 16534–16542.

    Article  CAS  PubMed  Google Scholar 

  15. F. Basse, J. G. Stout, P. J. Sims, T. Wiedmer, Isolation of an erythrocyte membrane protein that mediates Ca2+-dependent transbilayer movement of phospholipid, J. Biol. Chem., 1996, 271, 17205–17210.

    Article  CAS  PubMed  Google Scholar 

  16. C. M. Ernst, A. Peschel, Broad-spectrum antimicrobial peptide resistance by MprF-mediated aminoacylation and flipping of phospholipids, Mol. Microbiol., 2011, 80, 290–299.

    Article  CAS  PubMed  Google Scholar 

  17. L. T. Sham, E. K. Butler, M. D. Lebar, D. Kahne, T. G. Bernhardt, N. Ruiz, Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis, Science, 2014, 345, 220–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J. Suzuki, M. Umeda, P. J. Sims, S. Nagata, Calcium-dependent phospholipid scrambling by TMEM16F, Nature, 2010, 468, 834–838.

    Article  CAS  PubMed  Google Scholar 

  19. A. Picollo, M. Malvezzi, A. Accardi, TMEM16 proteins: unknown structure and confusing functions, J. Mol. Biol., 2015, 427, 94–105.

    Article  CAS  PubMed  Google Scholar 

  20. M. Malvezzi, M. Chalat, R. Janjusevic, A. Picollo, H. Terashima, A. K. Menon, A. Accardi, Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel, Nat. Commun., 2013, 4, 2367.

    Article  PubMed  Google Scholar 

  21. J. D. Brunner, N. K. Lim, S. Schenck, A. Duerst, R. Dutzler, X-ray structure of a calcium-activated TMEM16 lipid scramblase, Nature, 2014, 516, 207–212.

    Article  CAS  PubMed  Google Scholar 

  22. R. D. Kornberg, H. M. McConnell, Inside-outside transitions of phospholipids in vesicle membranes, Biochemistry, 1971, 10, 1111–1120.

    Article  CAS  PubMed  Google Scholar 

  23. M. Nakano, M. Fukuda, T. Kudo, H. Endo, T. Handa, Determination of interbilayer and transbilayer lipid transfers by time-resolved small-angle neutron scattering, Phys. Rev. Lett., 2007, 98, 238101.

    Article  PubMed  CAS  Google Scholar 

  24. M. Chalat, I. Menon, Z. Turan, A. K. Menon, Reconstitution of glucosylceramide flip-flop across endoplasmic reticulum: implications for mechanism of glycosphingolipid biosynthesis, J. Biol. Chem., 2012, 287, 15523–15532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. W. L. Hubbell, Transbilayer coupling mechanism for the formation of lipid asymmetry in biological membranes. Application to the photoreceptor disc membrane, Biophys. J., 1990, 57, 99–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. X. Zhou, T. T. Sebastian, T. R. Graham, Auto-inhibition of Drs2p, a yeast phospholipid flippase, by its carboxyl-terminal tail, J. Biol. Chem., 2013, 288, 31807–31815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. F. M. Roelants, A. G. Baltz, A. E. Trott, S. Fereres, J. Thorner, A protein kinase network regulates the function of aminophospholipid flippases, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 34–39.

    Article  CAS  PubMed  Google Scholar 

  28. S. Lee, Y. Uchida, J. Wang, T. Matsudaira, T. Nakagawa, T. Kishimoto, K. Mukai, T. Inaba, T. Kobayashi, R. S. Molday, T. Taguchi, H. Arai, Transport through recycling endosomes requires EHD1 recruitment by a phosphatidylserine translocase, EMBO J., 2015, 34, 669–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. J. A. Coleman, X. Zhu, H. R. Djajadi, L. L. Molday, R. S. Smith, R. T. Libby, S. W. John, R. S. Molday, Phospholipid flippase ATP8A2 is required for normal visual and auditory function and photoreceptor and spiral ganglion cell survival, J. Cell Sci., 2014, 127, 1138–1149.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Q. L. Chang, S. N. Gummadi, A. K. Menon, Chemical modification identifies two populations of glycerophospholipid flippase in rat liver ER, Biochemistry, 2004, 43, 10710–10718.

    Article  CAS  PubMed  Google Scholar 

  31. R. A. Vishwakarma, S. Vehring, A. Mehta, A. Sinha, T. Pomorski, A. Herrmann, A. K. Menon, New fluorescent probes reveal that flippase-mediated flip-flop of phosphatidylinositol across the endoplasmic reticulum membrane does not depend on the stereochemistry of the lipid, Org. Biomol. Chem., 2005, 3, 1275–1283.

    Article  CAS  PubMed  Google Scholar 

  32. S. Y. Lee, J. A. Letts, R. MacKinnon, Functional reconstitution of purified human Hv1 H+ channels, J. Mol. Biol., 2009, 387, 1055–1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. G. D. Eytan, Use of liposomes for reconstitution of biological functions, Biochim. Biophys. Acta, 1982, 694, 185–202.

    Article  CAS  PubMed  Google Scholar 

  34. A. F. Goldberg, C. Miller, Solubilization and functional reconstitution of a chloride channel from Torpedo californica electroplax, J. Membr. Biol., 1991, 124, 199–206.

    Article  CAS  PubMed  Google Scholar 

  35. L. Heginbotham, L. Kolmakova-Partensky, C. Miller, Functional reconstitution of a prokaryotic K+ channel, J. Gen. Physiol., 1998, 111, 741–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. F. J. Sharom, Flipping and flopping–lipids on the move, IUBMB Life, 2011, 63, 736–746.

    CAS  PubMed  Google Scholar 

  37. S. Shukla, V. Rai, P. Saini, D. Banerjee, A. K. Menon, R. Prasad, Candida drug resistance protein 1, a major multidrug ATP binding cassette transporter of Candida albicans, translocates fluorescent phospholipids in a reconstituted system, Biochemistry, 2007, 46, 12081–12090.

    Article  CAS  PubMed  Google Scholar 

  38. F. Quazi, R. S. Molday, Differential phospholipid substrates and directional transport by ATP-binding cassette proteins ABCA1, ABCA7, and ABCA4 and disease-causing mutants, J. Biol. Chem., 2013, 288, 34414–34426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. S. Sanyal, A. K. Menon, Specific transbilayer translocation of dolichol-linked oligosaccharides by an endoplasmic reticulum flippase, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 767–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. S. Sanyal, A. K. Menon, Stereoselective transbilayer translocation of mannosyl phosphoryl dolichol by an endoplasmic reticulum flippase, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 11289–11294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. K. Henzler-Wildman, D. Kern, Dynamic personalities of proteins, Nature, 2007, 450, 964–972.

    Article  CAS  PubMed  Google Scholar 

  42. J. Lubelski, W. N. Konings, A. J. Driessen, Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria, Microbiol. Mol. Biol. Rev., 2007, 71, 463–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. A. J. Venkatakrishnan, X. Deupi, G. Lebon, C. G. Tate, G. F. Schertler, M. M. Babu, Molecular signatures of G-protein-coupled receptors, Nature, 2013, 494, 185–194.

    Article  CAS  PubMed  Google Scholar 

  44. M. A. Kol, A. N. van Laak, D. T. Rijkers, J. A. Killian, A. I. de Kroon, B. de Kruijff, Phospholipid flop induced by transmembrane peptides in model membranes is modulated by lipid composition, Biochemistry, 2003, 42, 231–237.

    Article  CAS  PubMed  Google Scholar 

  45. M. A. Kol, A. I. de Kroon, J. A. Killian, B. de Kruijff, Transbilayer movement of phospholipids in biogenic membranes, Biochemistry, 2004, 43, 2673–2681.

    Article  CAS  PubMed  Google Scholar 

  46. M. Langer, R. Sah, A. Veser, M. Gutlich, D. Langosch, Structural properties of model phosphatidylcholine flippases, Chem. Biol., 2013, 20, 63–72.

    Article  CAS  PubMed  Google Scholar 

  47. D. Fotiadis, Y. Liang, S. Filipek, D. A. Saperstein, A. Engel, K. Palczewski, The G protein-coupled receptor rhodopsin in the native membrane, FEBS Lett., 2004, 564, 281–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. M. Gunkel, J. Schoneberg, W. Alkhaldi, S. Irsen, F. Noe, U. B. Kaupp, A. Al-Amoudi, Higher-order architecture of rhodopsin in intact photoreceptors and its implication for phototransduction kinetics, Structure, 2015, 23, 628–638.

    Article  CAS  PubMed  Google Scholar 

  49. G. F. Schertler, Rhodopsin on tracks: new ways to go in signaling, Structure, 2015, 23, 606–608.

    Article  CAS  PubMed  Google Scholar 

  50. D. Dell’Orco, A physiological role for the supramolecular organization of rhodopsin and transducin in rod photoreceptors, FEBS Lett., 2013, 587, 2060–2066.

    Article  PubMed  CAS  Google Scholar 

  51. L. Ruggiero, M. P. Connor, J. Chen, R. Langen, S. C. Finnemann, Diurnal, localized exposure of phosphatidylserine by rod outer segment tips in wild-type but not Itgb5−/− or Mfge8−/− mouse retina, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 8145–8148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. J. C. Holthuis, A. K. Menon, Lipid landscapes and pipelines in membrane homeostasis, Nature, 2014, 510, 48–57.

    Article  CAS  PubMed  Google Scholar 

  53. A. Grossfield, S. E. Feller, M. C. Pitman, A role for direct interactions in the modulation of rhodopsin by omega-3 polyunsaturated lipids, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 4888–4893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. K. Boesze-Battaglia, A. D. Albert, Cholesterol modulation of photoreceptor function in bovine retinal rod outer segments, J. Biol. Chem., 1990, 265, 20727–20730.

    Article  CAS  PubMed  Google Scholar 

  55. D. C. Mitchell, S. L. Niu, B. J. Litman, Enhancement of G protein-coupled signaling by DHA phospholipids, Lipids, 2003, 38, 437–443.

    Article  CAS  PubMed  Google Scholar 

  56. S. L. Niu, D. C. Mitchell, B. J. Litman, Manipulation of cholesterol levels in rod disk membranes by methyl-beta-cyclodextrin: effects on receptor activation, J. Biol. Chem., 2002, 277, 20139–20145.

    Article  CAS  PubMed  Google Scholar 

  57. A. D. Albert, K. Boesze-Battaglia, The role of cholesterol in rod outer segment membranes, Prog. Lipid Res., 2005, 44, 99–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. K. Boesze-Battaglia, S. J. Fliesler, A. D. Albert, Relationship of cholesterol content to spatial distribution and age of disc membranes in retinal rod outer segments, J. Biol. Chem., 1990, 265, 18867–18870.

    Article  CAS  PubMed  Google Scholar 

  59. B. Jastrzebska, A. Debinski, S. Filipek, K. Palczewski, Role of membrane integrity on G protein-coupled receptors: Rhodopsin stability and function, Prog. Lipid Res., 2011, 50, 267–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. K. Arikawa, L. L. Molday, R. S. Molday, D. S. Williams, Localization of peripherin/rds in the disk membranes of cone and rod photoreceptors: relationship to disk membrane morphogenesis and retinal degeneration, J. Cell Biol., 1992, 116, 659–667.

    Article  CAS  PubMed  Google Scholar 

  61. A. D. Albert, J. E. Young, Z. Paw, Phospholipid fatty acyl spatial distribution in bovine rod outer segment disk membranes, Biochim. Biophys. Acta, 1998, 1368, 52–60.

    Article  CAS  PubMed  Google Scholar 

  62. S. E. Feller, K. Gawrisch, Properties of docosahexaenoic-acid-containing lipids and their influence on the function of rhodopsin, Curr. Opin. Struct. Biol., 2005, 15, 416–422.

    Article  CAS  PubMed  Google Scholar 

  63. V. T. Armstrong, M. R. Brzustowicz, S. R. Wassall, L. J. Jenski, W. Stillwell, Rapid flip-flop in polyunsaturated (docosahexaenoate) phospholipid membranes, Arch. Biochem. Biophys., 2003, 414, 74–82.

    Article  CAS  PubMed  Google Scholar 

  64. O. Soubias, W. E. Teague, K. Gawrisch, Evidence for specificity in lipid-rhodopsin interactions, J. Biol. Chem., 2006, 281, 33233–33241.

    Article  CAS  PubMed  Google Scholar 

  65. N. Pedemonte, L. J. Galietta, Structure and function of TMEM16 proteins (anoctamins), Physiol. Rev., 2014, 94, 419–459.

    Article  CAS  PubMed  Google Scholar 

  66. S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, S. P. Mariotti, Global data on visual impairment in the year 2002, Bull. World Health Organ., 2004, 82, 844–851.

    PubMed  PubMed Central  Google Scholar 

  67. D. S. Friedman, B. J. O’Colmain, B. Munoz, S. C. Tomany, C. McCarty, P. T. de Jong, B. Nemesure, P. Mitchell, J. Kempen, The Eye Diseases Prevalence Research Group, Prevalence of age-related macular degeneration in the United States, Arch. Ophthalmol., 2004, 122, 564–572.

    Article  PubMed  Google Scholar 

  68. P. T. de Jong, Age-related macular degeneration, N. Engl. J. Med., 2006, 355, 1474–1485.

    Article  PubMed  Google Scholar 

  69. K. Palczewski, Chemistry and biology of vision, J. Biol. Chem., 2012, 287, 1612–1619.

    Article  CAS  PubMed  Google Scholar 

  70. J. R. Sparrow, N. Fishkin, J. Zhou, B. Cai, Y. P. Jang, S. Krane, Y. Itagaki, K. Nakanishi, A2E, a byproduct of the visual cycle, Vision Res., 2003, 43, 2983–2990.

    Article  CAS  PubMed  Google Scholar 

  71. P. D. Kiser, M. Golczak, K. Palczewski, Chemistry of the retinoid (visual) cycle, Chem. Rev., 2014, 114, 194–232.

    Article  CAS  PubMed  Google Scholar 

  72. C. A. Parish, M. Hashimoto, K. Nakanishi, J. Dillon, J. Sparrow, Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium, Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 14609–14613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. N. L. Mata, J. Weng, G. H. Travis, Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 7154–7159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. J. R. Sparrow, Y. Wu, C. Y. Kim, J. Zhou, Phospholipid meets all-trans-retinal: the making of RPE bisretinoids, J. Lipid Res., 2010, 51, 247–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. N. P. Boyer, D. Higbee, M. B. Currin, L. R. Blakeley, C. Chen, Z. Ablonczy, R. K. Crouch, Y. Koutalos, Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E) accumulate in retinal pigment epithelium in absence of light exposure: their origin is 11-cis-retinal, J. Biol. Chem., 2012, 287, 22276–22286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. F. Quazi, R. S. Molday, ATP-binding cassette transporter ABCA4 and chemical isomerization protect photoreceptor cells from the toxic accumulation of excess 11-cis-retinal, Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 5024–5029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. M. P. Sheetz, S. J. Singer, Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions, Proc. Natl. Acad. Sci. U. S. A., 1974, 71, 4457–4461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. J. C. Saari, Vitamin A metabolism in rod and cone visual cycles, Annu. Rev. Nutr., 2012, 32, 125–145.

    Article  CAS  PubMed  Google Scholar 

  79. H. Sun, Membrane receptors and transporters involved in the function and transport of vitamin A and its derivatives, Biochim. Biophys. Acta, 2012, 1821, 99–112.

    Article  CAS  PubMed  Google Scholar 

  80. A. K. Menon, W. E. 3rd Watkins, S. Hrafnsdottir, Specific proteins are required to translocate phosphatidylcholine bidirectionally across the endoplasmic reticulum, Curr. Biol., 2000, 10, 241–252.

    Article  CAS  PubMed  Google Scholar 

  81. T. Mohammadi, R. Sijbrandi, M. Lutters, J. Verheul, N. I. Martin, T. den Blaauwen, B. de Kruijff, E. Breukink, Specificity of the transport of lipid II by FtsW in Escherichia coli, J. Biol. Chem., 2014, 289, 14707–14718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. T. Pomorski, A. K. Menon, Lipid flippases and their biological functions, Cell. Mol. Life Sci., 2006, 63, 2908–2921.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oliver P. Ernst or Anant K. Menon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ernst, O.P., Menon, A.K. Phospholipid scrambling by rhodopsin. Photochem Photobiol Sci 14, 1922–1931 (2015). https://doi.org/10.1039/c5pp00195a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00195a

Navigation