Skip to main content
Log in

Characterizing rhodopsin signaling by EPR spectroscopy: from structure to dynamics

  • Perspectives
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Electron paramagnetic resonance (EPR) spectroscopy, together with spin labeling techniques, has played a major role in the characterization of rhodopsin, the photoreceptor protein and G protein-coupled receptor (GPCR) in rod cells. Two decades ago, these biophysical tools were the first to identify transmembrane helical movements in rhodopsin upon photo-activation, a critical step in the study of GPCR signaling. EPR methods were employed to identify functional loop dynamics within rhodopsin, to measure light-induced millisecond timescale changes in rhodopsin conformation, to characterize the effects of partial agonists on the apoprotein opsin, and to study lipid interactions with rhodopsin. With the emergence of advanced pulsed EPR techniques, the stage was set to determine the amplitude of structural changes in rhodopsin and the dynamics in the rhodopsin signaling complexes. Work in this area has yielded invaluable information about mechanistic properties of GPCRs. Using EPR techniques, receptors are studied in native-like membrane environments and the effects of lipids on conformational equilibria can be explored. This perspective addresses the impact of EPR methods on rhodopsin and GPCR structural biology, highlighting historical discoveries made with spin labeling techniques, and outlining exciting new directions in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. P. Ernst, D. T. Lodowski, M. Elstner, P. Hegemann, L. S. Brown and H. Kandori, Microbial and animal rhodopsins: structures, functions, and molecular mechanisms, Chem. Rev., 2014, 114, 126–163.

    Article  CAS  PubMed  Google Scholar 

  2. K. P. Hofmann, P. Scheerer, P. W. Hildebrand, H. W. Choe, J. H. Park, M. Heck and O. P. Ernst, A G protein-coupled receptor at work: the rhodopsin model, Trends Biochem. Sci., 2009, 34, 540–552.

    Article  CAS  PubMed  Google Scholar 

  3. Y. Koyama, K. Kubo, M. Komori, H. Yasuda and Y. Mukai, Effect of protonation on the isomerization properties of n-butylamine Schiff base of isomeric retinal as revealed by direct HPLC analyses: selection of isomerization pathways by retinal proteins, Photochem. Photobiol., 1991, 54, 433–443.

    Article  CAS  PubMed  Google Scholar 

  4. C. Altenbach, T. Marti, H. G. Khorana and W. L. Hubbell, Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants, Science, 1990, 248, 1088–1092.

    Article  CAS  PubMed  Google Scholar 

  5. C. Altenbach, S. L. Flitsch, H. G. Khorana and W. L. Hubbell, Structural studies on transmembrane proteins. 2. Spin labeling of bacteriorhodopsin mutants at unique cysteines, Biochemistry, 1989, 28, 7806–7812.

    Article  CAS  PubMed  Google Scholar 

  6. M. R. Fleissner, E. M. Brustad, T. Kalai, C. Altenbach, D. Cascio, F. B. Peters, K. Hideg, S. Peuker, P. G. Schultz and W. L. Hubbell, Site-directed spin labeling of a genetically encoded unnatural amino acid, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 21637–21642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. J. Schmidt, J. Borbas, M. Drescher and D. Summerer, A genetically encoded spin label for electron paramagnetic resonance distance measurements, J. Am. Chem. Soc., 2014, 136, 1238–1241.

    Article  CAS  PubMed  Google Scholar 

  8. J. P. Klare, Site-directed spin labeling EPR spectroscopy in protein research, Biol. Chem., 2013, 394, 1281–1300.

    Article  CAS  PubMed  Google Scholar 

  9. W. L. Hubbell, C. Altenbach, C. M. Hubbell and H. G. Khorana, Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking, Adv. Protein Chem., 2003, 63, 243–290.

    Article  CAS  PubMed  Google Scholar 

  10. J. Sasaki, B. J. Phillips, X. Chen, N. Van Eps, A. L. Tsai, W. L. Hubbell and J. L. Spudich, Different dark conformations function in color-sensitive photosignaling by the sensory rhodopsin I-HtrI complex, Biophys. J., 2007, 92, 4045–4053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. E. Bordignon, J. P. Klare, J. Holterhues, S. Martell, A. Krasnaberski, M. Engelhard and H. J. Steinhoff, Analysis of light-induced conformational changes of Natronomonas pharaonis sensory rhodopsin II by time resolved electron paramagnetic resonance spectroscopy, Photochem. Photobiol., 2007, 83, 263–272.

    Article  CAS  PubMed  Google Scholar 

  12. D. T. Edwards, T. Huber, S. Hussain, K. M. Stone, M. Kinnebrew, I. Kaminker, E. Matalon, M. S. Sherwin, D. Goldfarb and S. Han, Determining the oligomeric structure of proteorhodopsin by Gd3+ -based pulsed dipolar spectroscopy of multiple distances, Structure, 2014, 22, 1677–1686.

    Article  CAS  PubMed  Google Scholar 

  13. T. Sattig, C. Rickert, E. Bamberg, H. J. Steinhoff and C. Bamann, Light-induced movement of the transmembrane helix B in channelrhodopsin-2, Angew. Chem., Int. Ed., 2013, 52, 9705–9708.

    Article  CAS  Google Scholar 

  14. N. Krause, C. Engelhard, J. Heberle, R. Schlesinger and R. Bittl, Structural differences between the closed and open states of channelrhodopsin-2 as observed by EPR spectroscopy, FEBS Lett., 2013, 587, 3309–3313.

    Article  CAS  PubMed  Google Scholar 

  15. D. E. Budil, S. Lee, S. Saxena and J. H. Freed, Nonlinear-Least-Squares Analysis of Slow-Motion EPR Spectra in One and Two Dimensions Using a Modified Levenberg–Marquardt Algorithm, J. Magn. Reson., 1996, 120, 155–189.

    Article  CAS  Google Scholar 

  16. L. Columbus and W. L. Hubbell, A new spin on protein dynamics, Trends Biochem. Sci., 2002, 27, 288–295.

    Article  CAS  PubMed  Google Scholar 

  17. C. J. Lopez, S. Oga and W. L. Hubbell, Mapping molecular flexibility of proteins with site-directed spin labeling: a case study of myoglobin, Biochemistry, 2012, 51, 6568–6583.

    Article  CAS  PubMed  Google Scholar 

  18. C. Altenbach, W. Froncisz, R. Hemker, H. McHaourab and W. L. Hubbell, Accessibility of nitroxide side chains: absolute Heisenberg exchange rates from power saturation EPR, Biophys. J., 2005, 89, 2103–2112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. D. L. Farrens, C. Altenbach, K. Yang, W. L. Hubbell and H. G. Khorana, Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin, Science, 1996, 274, 768–770.

    Article  CAS  PubMed  Google Scholar 

  20. C. Altenbach, K. Yang, D. L. Farrens, Z. T. Farahbakhsh, H. G. Khorana and W. L. Hubbell, Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: a site-directed spin-labeling study, Biochemistry, 1996, 35, 12470–12478.

    Article  CAS  PubMed  Google Scholar 

  21. M. Elgeti, A. S. Rose, F. J. Bartl, P. W. Hildebrand, K. P. Hofmann and M. Heck, Precision vs flexibility in GPCR signaling, J. Am. Chem. Soc., 2013, 135, 12305–12312.

    Article  CAS  PubMed  Google Scholar 

  22. K. Palczewski, T. Kumasaka, T. Hori, C. A. Behnke, H. Motoshima, B. A. Fox, I. Le Trong, D. C. Teller, T. Okada, R. E. Stenkamp, M. Yamamoto and M. Miyano, Crystal structure of rhodopsin: A G protein-coupled receptor, Science, 2000, 289, 739–745.

    Article  CAS  PubMed  Google Scholar 

  23. T. Okada, M. Sugihara, A. N. Bondar, M. Elstner, P. Entel and V. Buss, The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure, J. Mol. Biol., 2004, 342, 571–583.

    Article  CAS  PubMed  Google Scholar 

  24. J. Li, P. C. Edwards, M. Burghammer, C. Villa and G. F. Schertler, Structure of bovine rhodopsin in a trigonal crystal form, J. Mol. Biol., 2004, 343, 1409–1438.

    Article  CAS  PubMed  Google Scholar 

  25. T. Mirzadegan, G. Benko, S. Filipek and K. Palczewski, Sequence analyses of G-protein-coupled receptors: similarities to rhodopsin, Biochemistry, 2003, 42, 2759–2767.

    Article  CAS  PubMed  Google Scholar 

  26. O. Fritze, S. Filipek, V. Kuksa, K. Palczewski, K. P. Hofmann and O. P. Ernst, Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 2290–2295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. N. Radzwill, K. Gerwert and H. J. Steinhoff, Time-resolved detection of transient movement of helices F and G in doubly spin-labeled bacteriorhodopsin, Biophys. J., 2001, 80, 2856–2866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. T. Rink, J. Riesle, D. Oesterhelt, K. Gerwert and H. J. Steinhoff, Spin-labeling studies of the conformational changes in the vicinity of D36, D38, T46, and E161 of bacteriorhodopsin during the photocycle, Biophys. J., 1997, 73, 983–993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. H. J. Steinhoff, R. Mollaaghababa, C. Altenbach, K. Hideg, M. Krebs, H. G. Khorana and W. L. Hubbell, Time-resolved detection of structural changes during the photocycle of spin-labeled bacteriorhodopsin, Science, 1994, 266, 105–107.

    Article  CAS  PubMed  Google Scholar 

  30. T. E. Thorgeirsson, W. Xiao, L. S. Brown, R. Needleman, J. K. Lanyi and Y. K. Shin, Transient channel-opening in bacteriorhodopsin: an EPR study, J. Mol. Biol., 1997, 273, 951–957.

    Article  CAS  PubMed  Google Scholar 

  31. B. Knierim, K. P. Hofmann, O. P. Ernst and W. L. Hubbell, Sequence of late molecular events in the activation of rhodopsin, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 20290–20295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. N. Van Eps, L. L. Anderson, O. G. Kisselev, T. J. Baranski, W. L. Hubbell and G. R. Marshall, Electron paramagnetic resonance studies of functionally active, nitroxide spin-labeled peptide analogues of the C-terminus of a G-protein alpha subunit, Biochemistry, 2010, 49, 6877–6886.

    Article  PubMed  CAS  Google Scholar 

  33. M. Mahalingam, K. Martinez-Mayorga, M. F. Brown and R. Vogel, Two protonation switches control rhodopsin activation in membranes, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 17795–17800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. P. Scheerer, J. H. Park, P. W. Hildebrand, Y. J. Kim, N. Krauss, H. W. Choe, K. P. Hofmann and O. P. Ernst, Crystal structure of opsin in its G-protein-interacting conformation, Nature, 2008, 455, 497–502.

    Article  CAS  PubMed  Google Scholar 

  35. H. W. Choe, Y. J. Kim, J. H. Park, T. Morizumi, E. F. Pai, N. Krauss, K. P. Hofmann, P. Scheerer and O. P. Ernst, Crystal structure of metarhodopsin II, Nature, 2011, 471, 651–655.

    Article  CAS  PubMed  Google Scholar 

  36. X. Deupi, P. Edwards, A. Singhal, B. Nickle, D. Oprian, G. Schertler and J. Standfuss, Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 119–124.

    Article  CAS  PubMed  Google Scholar 

  37. S. G. Rasmussen, B. T. DeVree, Y. Zou, A. C. Kruse, K. Y. Chung, T. S. Kobilka, F. S. Thian, P. S. Chae, E. Pardon, D. Calinski, J. M. Mathiesen, S. T. Shah, J. A. Lyons, M. Caffrey, S. H. Gellman, J. Steyaert, G. Skiniotis, W. I. Weis, R. K. Sunahara and B. K. Kobilka, Crystal structure of the beta2 adrenergic receptor-Gs protein complex, Nature, 2011, 477, 549–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. M. Pannier, S. Veit, A. Godt, G. Jeschke and H. W. Spiess, Dead-time free measurement of dipole-dipole interactions between electron spins, J. Magn. Reson., 2000, 142, 331–340.

    Article  CAS  PubMed  Google Scholar 

  39. W. M. Oldham, N. Van Eps, A. M. Preininger, W. L. Hubbell and H. E. Hamm, Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins, Nat. Struct. Mol. Biol., 2006, 13, 772–777.

    Article  CAS  PubMed  Google Scholar 

  40. P. Scheerer, M. Heck, A. Goede, J. H. Park, H. W. Choe, O. P. Ernst, K. P. Hofmann and P. W. Hildebrand, Structural and kinetic modeling of an activating helix switch in the rhodopsin-transducin interface, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 10660–10665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. C. Altenbach, A. K. Kusnetzow, O. P. Ernst, K. P. Hofmann and W. L. Hubbell, High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 7439–7444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. J. W. Wisler, K. Xiao, A. R. Thomsen and R. J. Lefkowitz, Recent developments in biased agonism, Curr. Opin. Cell Biol., 2014, 27, 18–24.

    Article  CAS  PubMed  Google Scholar 

  43. M. Audet and M. Bouvier, Restructuring G-protein- coupled receptor activation, Cell, 2012, 151, 14–23.

    Article  CAS  PubMed  Google Scholar 

  44. V. Katritch, V. Cherezov and R. C. Stevens, Structure-function of the G protein-coupled receptor superfamily, Annu. Rev. Pharmacol. Toxicol., 2013, 53, 531–556.

    Article  CAS  PubMed  Google Scholar 

  45. J. H. Park, P. Scheerer, K. P. Hofmann, H. W. Choe and O. P. Ernst, Crystal structure of the ligand-free G-protein-coupled receptor opsin, Nature, 2008, 454, 183–187.

    Article  CAS  PubMed  Google Scholar 

  46. J. H. Park, T. Morizumi, Y. Li, J. E. Hong, E. F. Pai, K. P. Hofmann, H. W. Choe and O. P. Ernst, Opsin, a structural model for olfactory receptors?, Angew. Chem., Int. Ed., 2013, 52, 11021–11024.

    Article  CAS  Google Scholar 

  47. A. Manglik and B. Kobilka, The role of protein dynamics in GPCR function: insights from the beta2AR and rhodopsin, Curr. Opin. Cell Biol., 2014, 27, 136–143.

    Article  CAS  PubMed  Google Scholar 

  48. U. M. Ganter, E. D. Schmid, D. Perez-Sala, R. R. Rando and F. Siebert, Removal of the 9-methyl group of retinal inhibits signal transduction in the visual process. A Fourier transform infrared and biochemical investigation, Biochemistry, 1989, 28, 5954–5962.

    Article  CAS  PubMed  Google Scholar 

  49. T. Okada, H. Kandori, Y. Shichida, T. Yoshizawa, M. Denny, B. W. Zhang, A. E. Asato and R. S. Liu, Spectroscopic study of the batho-to-lumi transition during the photobleaching of rhodopsin using ring-modified retinal analogues, Biochemistry, 1991, 30, 4796–4802.

    Article  CAS  PubMed  Google Scholar 

  50. F. Jager, S. Jager, O. Krutle, N. Friedman, M. Sheves, K. P. Hofmann and F. Siebert, Interactions of the beta-ionone ring with the protein in the visual pigment rhodopsin control the activation mechanism. An FTIR and fluorescence study on artificial vertebrate rhodopsins, Biochemistry, 1994, 33, 7389–7397.

    Article  CAS  PubMed  Google Scholar 

  51. R. Vogel, F. Siebert, S. Ludeke, A. Hirshfeld and M. Sheves, Agonists and partial agonists of rhodopsin: retinals with ring modifications, Biochemistry, 2005, 44, 11684–11699.

    Article  CAS  PubMed  Google Scholar 

  52. F. J. Bartl, O. Fritze, E. Ritter, R. Herrmann, V. Kuksa, K. Palczewski, K. P. Hofmann and O. P. Ernst, Partial agonism in a G Protein-coupled receptor: role of the retinal ring structure in rhodopsin activation, J. Biol. Chem., 2005, 280, 34259–34267.

    Article  CAS  PubMed  Google Scholar 

  53. R. Vogel, S. Ludeke, F. Siebert, T. P. Sakmar, A. Hirshfeld and M. Sheves, Agonists and partial agonists of rhodopsin: retinal polyene methylation affects receptor activation, Biochemistry, 2006, 45, 1640–1652.

    Article  CAS  PubMed  Google Scholar 

  54. R. Vogel, G. B. Fan, M. Sheves and F. Siebert, The molecular origin of the inhibition of transducin activation in rhodopsin lacking the 9-methyl group of the retinal chromophore: a UV-Vis and FTIR spectroscopic study, Biochemistry, 2000, 39, 8895–8908.

    Article  CAS  PubMed  Google Scholar 

  55. C. K. Meyer, M. Bohme, A. Ockenfels, W. Gartner, K. P. Hofmann and O. P. Ernst, Signaling states of rhodopsin. Retinal provides a scaffold for activating proton transfer switches, J. Biol. Chem., 2000, 275, 19713–19718.

    Article  CAS  PubMed  Google Scholar 

  56. B. Knierim, K. P. Hofmann, W. Gartner, W. L. Hubbell and O. P. Ernst, Rhodopsin and 9-demethyl-retinal analog: effect of a partial agonist on displacement of transmembrane helix 6 in class A G protein-coupled receptors, J. Biol. Chem., 2008, 283, 4967–4974.

    Article  CAS  PubMed  Google Scholar 

  57. K. Boesze-Battaglia and A. D. Albert, Phospholipid distribution among bovine rod outer segment plasma membrane and disk membranes, Exp. Eye Res., 1992, 54, 821–823.

    Article  CAS  PubMed  Google Scholar 

  58. K. Boesze-Battaglia and A. D. Albert, Fatty acid composition of bovine rod outer segment plasma membrane, Exp. Eye Res., 1989, 49, 699–701.

    Article  CAS  PubMed  Google Scholar 

  59. A. D. Albert and K. Boesze-Battaglia, The role of cholesterol in rod outer segment membranes, Prog. Lipid Res., 2005, 44, 99–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. O. Soubias and K. Gawrisch, The role of the lipid matrix for structure and function of the GPCR rhodopsin, Biochim. Biophys. Acta, 2012, 1818, 234–240.

    Article  CAS  PubMed  Google Scholar 

  61. O. Soubias, W. E. Teague Jr., K. G. Hines, D. C. Mitchell and K. Gawrisch, Contribution of membrane elastic energy to rhodopsin function, Biophys. J., 2010, 99, 817–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. D. C. Mitchell, M. Straume, J. L. Miller and B. J. Litman, Modulation of metarhodopsin formation by cholesterol-induced ordering of bilayer lipids, Biochemistry, 1990, 29, 9143–9149.

    Article  CAS  PubMed  Google Scholar 

  63. S. L. Niu, D. C. Mitchell and B. J. Litman, Manipulation of cholesterol levels in rod disk membranes by methyl-beta-cyclodextrin: effects on receptor activation, J. Biol. Chem., 2002, 277, 20139–20145.

    Article  CAS  PubMed  Google Scholar 

  64. M. Straume and B. J. Litman, Equilibrium and dynamic bilayer structural properties of unsaturated acyl chain phosphatidylcholine-cholesterol-rhodopsin recombinant vesicles and rod outer segment disk membranes as determined from higher order analysis of fluorescence anisotropy decay, Biochemistry, 1988, 27, 7723–7733.

    Article  CAS  PubMed  Google Scholar 

  65. A. D. Albert, J. E. Young and P. L. Yeagle, Rhodopsin-cholesterol interactions in bovine rod outer segment disk membranes, Biochim. Biophys. Acta, 1996, 1285, 47–55.

    Article  PubMed  Google Scholar 

  66. G. Khelashvili, A. Grossfield, S. E. Feller, M. C. Pitman and H. Weinstein, Structural and dynamic effects of cholesterol at preferred sites of interaction with rhodopsin identified from microsecond length molecular dynamics simulations, Proteins, 2009, 76, 403–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. M. Jafurulla, S. Tiwari and A. Chattopadhyay, Identification of cholesterol recognition amino acid consensus (CRAC) motif in G-protein coupled receptors, Biochem. Biophys. Res. Commun., 2011, 404, 569–573.

    Article  CAS  PubMed  Google Scholar 

  68. M. A. Hanson, V. Cherezov, M. T. Griffith, C. B. Roth, V. P. Jaakola, E. Y. Chien, J. Velasquez, P. Kuhn and R. C. Stevens, A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor, Structure, 2008, 16, 897–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. J. Oates and A. Watts, Uncovering the intimate relationship between lipids, cholesterol and GPCR activation, Curr. Opin. Struct. Biol., 2011, 21, 802–807.

    Article  CAS  PubMed  Google Scholar 

  70. M. F. Brown, Curvature forces in membrane lipid-protein interactions, Biochemistry, 2012, 51, 9782–9795.

    Article  CAS  PubMed  Google Scholar 

  71. M. Beck, F. Siebert and T. P. Sakmar, Evidence for the specific interaction of a lipid molecule with rhodopsin which is altered in the transition to the active state metarhodopsin II, FEBS Lett., 1998, 436, 304–308.

    Article  CAS  PubMed  Google Scholar 

  72. N. R. Civjan, T. H. Bayburt, M. A. Schuler and S. G. Sligar, Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers, BioTechniques, 2003, 35, 556–560, 562–563.

    Article  CAS  PubMed  Google Scholar 

  73. T. H. Bayburt, A. J. Leitz, G. Xie, D. D. Oprian and S. G. Sligar, Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins, J. Biol. Chem., 2007, 282, 14875–14881.

    Article  CAS  PubMed  Google Scholar 

  74. T. H. Bayburt, S. A. Vishnivetskiy, M. A. McLean, T. Morizumi, C. C. Huang, J. J. Tesmer, O. P. Ernst, S. G. Sligar and V. V. Gurevich, Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding, J. Biol. Chem., 2011, 286, 1420–1428.

    Article  CAS  PubMed  Google Scholar 

  75. H. Tsukamoto, A. Sinha, M. DeWitt and D. L. Farrens, Monomeric rhodopsin is the minimal functional unit required for arrestin binding, J. Mol. Biol., 2010, 399, 501–511.

    Article  CAS  PubMed  Google Scholar 

  76. S. Banerjee, T. Huber and T. P. Sakmar, Rapid incorporation of functional rhodopsin into nanoscale apolipoprotein bound bilayer (NABB) particles, J. Mol. Biol., 2008, 377, 1067–1081.

    Article  CAS  PubMed  Google Scholar 

  77. A. M. D’Antona, G. Xie, S. G. Sligar and D. D. Oprian, Assembly of an activated rhodopsin-transducin complex in nanoscale lipid bilayers, Biochemistry, 2014, 53, 127–134.

    Article  PubMed  CAS  Google Scholar 

  78. K. Kojima, Y. Imamoto, R. Maeda, T. Yamashita and Y. Shichida, Rod visual pigment optimizes active state to achieve efficient G protein activation as compared with cone visual pigments, J. Biol. Chem., 2014, 289, 5061–5073.

    Article  CAS  PubMed  Google Scholar 

  79. P. Stepien, A. Polit and A. Wisniewska-Becker, Comparative EPR studies on lipid bilayer properties in nanodiscs and liposomes, Biochim. Biophys. Acta, 2015, 1848, 60–66.

    Article  CAS  PubMed  Google Scholar 

  80. A. K. Kusnetzow, C. Altenbach and W. L. Hubbell, Conformational states and dynamics of rhodopsin in micelles and bilayers, Biochemistry, 2006, 45, 5538–5550.

    Article  CAS  PubMed  Google Scholar 

  81. D. Marsh, A. Watts, R. D. Pates, R. Uhl, P. F. Knowles and M. Esmann, ESR spin-label studies of lipid-protein interactions in membranes, Biophys. J., 1982, 37, 265–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. A. Watts, I. D. Volotovski and D. Marsh, Rhodopsin-lipid associations in bovine rod outer segment membranes. Identification of immobilized lipid by spin-labels, Biochemistry, 1979, 18, 5006–5013.

    Article  CAS  PubMed  Google Scholar 

  83. D. Marsh, Electron spin resonance in membrane research: protein-lipid interactions from challenging beginnings to state of the art, Eur. Biophys. J., 2010, 39, 513–525.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ned Van Eps or Oliver P. Ernst.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Eps, N., Caro, L.N., Morizumi, T. et al. Characterizing rhodopsin signaling by EPR spectroscopy: from structure to dynamics. Photochem Photobiol Sci 14, 1586–1597 (2015). https://doi.org/10.1039/c5pp00191a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00191a

Navigation