Skip to main content
Log in

Helical rearrangement of photoactivated rhodopsin in monomeric and dimeric forms probed by high-angle X-ray scattering

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Light-induced helical rearrangement of vertebrate visual rhodopsin was directly monitored by high-angle X-ray scattering (HAXS), ranging from Q (= 4π?sin?θ/λ) = 0.03 Å−1 to Q = 1.5 Å−1. HAXS of nanodiscs containing a single rhodopsin molecule was performed before and after photoactivation of rhodopsin. The intensity difference curve obtained by HAXS agreed with that calculated from the crystal structure of dark state rhodopsin and metarhodopsin II, indicating that the conformational change of monomeric rhodopsin in the membrane is consistent with that occurring in the crystal. On the other hand, the HAXS intensity difference curve of nanodiscs containing two rhodopsin molecules was significantly reduced, similar to that calculated from the crystal structure of the deprotonated intermediate, without a large conformational change. These results suggest that rhodopsin is dimerized in the membrane and that the interaction between rhodopsin molecules modulates structural changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Palczewski, T. Kumasaka, T. Hori, C. A. Behnke, H. Motoshima, B. A. Fox, I. Le Trong, D. C. Teller, T. Okada, R. E. Stenkamp, M. Yamamoto, M. Miyano, Crystal structure of rhodopsin: A G protein-coupled receptor, Science, 2000, 289, 739.

    Article  CAS  Google Scholar 

  2. X. Deupi, J. Standfuss, Structural insights into agonist-induced activation of G-protein-coupled receptors, Curr. Opin. Struct. Biol., 2011, 21, 541.

    Article  CAS  Google Scholar 

  3. J. H. Park, P. Scheerer, K. P. Hofmann, H. W. Choe, O. P. Ernst, Crystal structure of the ligand-free G-protein-coupled receptor opsin, Nature, 2008, 454, 183.

    Article  CAS  Google Scholar 

  4. P. Scheerer, J. H. Park, P. W. Hildebrand, Y. J. Kim, N. Krauss, H. W. Choe, K. P. Hofmann, O. P. Ernst, Crystal structure of opsin in its G-protein-interacting conformation, Nature, 2008, 455, 497.

    Article  CAS  Google Scholar 

  5. H. W. Choe, Y. J. Kim, J. H. Park, T. Morizumi, E. F. Pai, N. Krauss, K. P. Hofmann, P. Scheerer, O. P. Ernst, Crystal structure of metarhodopsin II, Nature, 2011, 471, 651.

    Article  CAS  Google Scholar 

  6. X. Deupi, P. Edwards, A. Singhal, B. Nickle, D. Oprian, G. Schertler, J. Standfuss, Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 119.

    Article  CAS  Google Scholar 

  7. J. Standfuss, P. C. Edwards, A. D’Antona, M. Fransen, G. Xie, D. D. Oprian, G. F. Schertler, The structural basis of agonist-induced activation in constitutively active rhodopsin, Nature, 2011, 471, 656.

    Article  CAS  Google Scholar 

  8. D. Salom, D. T. Lodowski, R. E. Stenkamp, I. Le Trong, M. Golczak, B. Jastrzebska, T. Harris, J. A. Ballesteros, K. Palczewski, Crystal structure of a photoactivated deprotonated intermediate of rhodopsin, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 16123.

    Article  CAS  Google Scholar 

  9. S. G. Rasmussen, B. T. DeVree, Y. Zou, A. C. Kruse, K. Y. Chung, T. S. Kobilka, F. S. Thian, P. S. Chae, E. Pardon, D. Calinski, J. M. Mathiesen, S. T. Shah, J. A. Lyons, M. Caffrey, S. H. Gellman, J. Steyaert, G. Skiniotis, W. I. Weis, R. K. Sunahara, B. K. Kobilka, Crystal structure of the β2 adrenergic receptor-Gs protein complex, Nature, 2011, 477, 549.

    Article  CAS  Google Scholar 

  10. A. K. Shukla, A. Manglik, A. C. Kruse, K. Xiao, R. I. Reis, W. C. Tseng, D. P. Staus, D. Hilger, S. Uysal, L. Y. Huang, M. Paduch, P. Tripathi-Shukla, A. Koide, S. Koide, W. I. Weis, A. A. Kossiakoff, B. K. Kobilka, R. J. Lefkowitz, Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide, Nature, 2013, 497, 137.

    Article  CAS  Google Scholar 

  11. R. Maeda, M. Hiroshima, T. Yamashita, A. Wada, S. Nishimura, Y. Sako, Y. Shichida, Y. Imamoto, Single-molecule observation of the ligand-induced population shift of rhodopsin, a G-protein-coupled receptor, Biophys. J., 2014, 106, 915.

    Article  CAS  Google Scholar 

  12. R. Vogel, F. Siebert, Conformations of the active and inactive states of opsin, J. Biol. Chem., 2001, 276, 38487.

    Article  CAS  Google Scholar 

  13. B. Knierim, K. P. Hofmann, O. P. Ernst, W. L. Hubbell, Sequence of late molecular events in the activation of rhodopsin, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 20290.

    Article  CAS  Google Scholar 

  14. M. Mahalingam, K. Martinez-Mayorga, M. F. Brown, R. Vogel, Two protonation switches control rhodopsin activation in membranes, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 17795.

    Article  CAS  Google Scholar 

  15. Y. Yamazaki, T. Nagata, A. Terakita, H. Kandori, Y. Shichida, Y. Imamoto, Mapping of the local environmental changes in proteins by cysteine scanning, Biophysics, 2014, 10, 1.

    Article  Google Scholar 

  16. Y. Yamazaki, T. Nagata, A. Terakita, H. Kandori, Y. Shichida, Y. Imamoto, Intramolecular interactions that Induce helical rearrangement upon rhodopsin activation: Light-induced structural changes in metarhodopsin IIa probed by cysteine S-H stretching vibrations, J. Biol. Chem., 2014, 289, 13792.

    Article  CAS  Google Scholar 

  17. E. Malmerberg, M. B.-G. PH, G. Katona, X. Deupi, D. Arnlund, C. Wickstrand, L. C. Johansson, S. Westenhoff, E. Nazarenko, X. S. GF, A. Menzel, W. J. de Grip, R. Neutze, Conformational activation of visual rhodopsin in native disc membranes, Sci. Signaling, 2015, 8, ra26.

    Article  Google Scholar 

  18. M. Andersson, E. Malmerberg, S. Westenhoff, G. Katona, M. Cammarata, A. B. Wohri, L. C. Johansson, F. Ewald, M. Eklund, M. Wulff, J. Davidsson, R. Neutze, Structural dynamics of light-driven proton pumps, Structure, 2009, 17, 1265.

    Article  CAS  Google Scholar 

  19. M. Kataoka, Y. Goto, X-ray solution scattering studies of protein folding, Folding Des., 1996, 1, R107.

    Article  CAS  Google Scholar 

  20. T. H. Bayburt, Y. V. Grinkova, S. G. Sligar, Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins, Nano Lett., 2002, 2, 853.

    Article  CAS  Google Scholar 

  21. K. Kojima, Y. Imamoto, R. Maeda, T. Yamashita, Y. Shichida, Rod visual pigment optimizes active state to achieve efficient G protein activation as compared with cone visual pigments, J. Biol. Chem., 2014, 289, 5061.

    Article  CAS  Google Scholar 

  22. H. Tsukamoto, A. Sinha, M. DeWitt, D. L. Farrens, Monomeric rhodopsin is the minimal functional unit required for arrestin binding, J. Mol. Biol., 2010, 399, 501.

    Article  CAS  Google Scholar 

  23. Y. Imamoto, I. Seki, T. Yamashita, Y. Shichida, Efficiencies of activation of transducin by cone and rod visual pigments, Biochemistry, 2013, 52, 3010–3018.

    Article  CAS  Google Scholar 

  24. Y. Imamoto, Y. Shichida, Thermal recovery of iodopsin from photobleaching intermediates, Photochem. Photobiol., 2008, 84, 941.

    Article  CAS  Google Scholar 

  25. F. J. Bartl, R. Vogel, Structural and functional properties of metarhodopsin III: recent spectroscopic studies on deactivation pathways of rhodopsin, Phys. Chem. Chem. Phys., 2007, 9, 1648.

    Article  CAS  Google Scholar 

  26. B. König, W. Welte, K. P. Hofmann, Photoactivation of rhodopsin and interaction with transducin in detergent micelles. Effect of ‘doping’ with steroid molecules, FEBS Lett., 1989, 257, 163.

    Article  Google Scholar 

  27. J. H. Parkes, P. A. Liebman, Temperature and pH dependence of the metarhodopsin I-metarhodopsin II kinetics and equilibria in bovine rod disk membrane suspensions, Biochemistry, 1984, 23, 5054.

    Article  CAS  Google Scholar 

  28. T. H. Bayburt, A. J. Leitz, G. Xie, D. D. Oprian, S. G. Sligar, Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins, J. Biol. Chem., 2007, 282, 14875.

    Article  CAS  Google Scholar 

  29. T. Kawaguchi, T. Hamanaka, Y. Kito, X-ray diffraction pattern from internal structure of bovine rhodopsin, J. Biochem., 1996, 119, 396.

    Article  CAS  Google Scholar 

  30. D. I. Svergun, C. Baberato, M. H. J. Koch, CRYSOL-a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates, J. Appl. Crystallogr., 1995, 28, 768.

    Article  CAS  Google Scholar 

  31. S. Banerjee, T. Huber, T. P. Sakmar, Rapid incorporation of functional rhodopsin into nanoscale apolipoprotein bound bilayer (NABB) particles, J. Mol. Biol., 2008, 377, 1067.

    Article  CAS  Google Scholar 

  32. J. J. Ruprecht, T. Mielke, R. Vogel, C. Villa, G. F. X. Schertler, Electron crystallography reveals the structure of metarhodopsin I, EMBO J., 2004, 23, 3609.

    Article  CAS  Google Scholar 

  33. E. Zaitseva, M. F. Brown, R. Vogel, Sequential rearrangement of interhelical networks upon rhodopsin activation in membranes: the Meta IIa conformational substate, J. Am. Chem. Soc., 2010, 132, 4815.

    Article  CAS  Google Scholar 

  34. H. Nakamichi, T. Okada, Crystallographic analysis of primary visual photochemistry, Angew. Chem., Int. Ed., 2006, 45, 4270.

    Article  CAS  Google Scholar 

  35. H. Nakamichi, T. Okada, Local peptide movement in the photoreaction intermediate of rhodopsin, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 12729.

    Article  CAS  Google Scholar 

  36. B. Jastrzebska, T. Maeda, L. Zhu, D. Fotiadis, S. Filipek, A. Engel, R. E. Stenkamp, K. Palczewski, Functional characterization of rhodopsin monomers and dimers in detergents, J. Biol. Chem., 2004, 279, 54663.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Imamoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imamoto, Y., Kojima, K., Oka, T. et al. Helical rearrangement of photoactivated rhodopsin in monomeric and dimeric forms probed by high-angle X-ray scattering. Photochem Photobiol Sci 14, 1965–1973 (2015). https://doi.org/10.1039/c5pp00175g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00175g

Navigation