Skip to main content
Log in

Solvent viscosity influence on the chemiexcitation efficiency of inter and intramolecular chemiluminescence systems

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The effects of the medium viscosity on the chemiexcitation quantum yields of the induced decomposition of 1,2-dioxetanes (highly efficient intramolecular CIEEL system) and the catalyzed decomposition of diphenoyl peroxide and a 1,2-dioxetanone derivative (model systems for the intermolecular CIEEL mechanism, despite their low efficiency) are compared in this work. Quantum yields of the rubrene catalyzed decomposition of diphenoyl peroxide and spiro-adamantyl-1,2-dioxetanone as well as the fluoride induced decomposition of a phenoxy-substituted 1,2-dioxetane derivative are shown to depend on the composition of the binary solvent mixture toluene/diphenyl ether, which possess similar polarity parameters but different viscosities. Correlations of the quantum yield data with the medium viscosity using the diffusional and the frictional (free-volume) models indicate that the induced 1,2-dioxetane decomposition indeed occurs by an entirely intramolecular process and the low efficiency of the intermolecular chemiluminescence systems (catalyzed decomposition of diphenoyl peroxide and 1,2-dioxetanone derivative) is not primarily due to the cage escape of radical ion species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Baader, C. V. Stevani and E. L. Bastos, Chemiluminescence of organic peroxides, in The chemistry of peroxides, ed. Z. Rappoport, Wiley & Sons, Chichester, 2006, ch. 16, vol. 2, pp. 1211–1278.

    Article  CAS  Google Scholar 

  2. W. Adam, W. J. Baader, Effects of methylation on the thermal stability and chemiluminescence properties of 1,2-dioxetanes, J. Am. Chem. Soc., 1985, 107, 410–416.

    Article  CAS  Google Scholar 

  3. W. Adam, W. J. Baader, 1,2-Dioxetane: Synthesis, characterization, stability and chemiluminescence, Angew. Chem., Int. Ed. Engl., 1984, 23, 166–167.

    Article  Google Scholar 

  4. G. B. Schuster, Chemiluminescence of organic peroxides. Conversion of ground-state reactants to excited state products by the chemically initiated electron-exchange luminescence mechanism, Acc. Chem. Res., 1979, 12, 366–373.

    Article  CAS  Google Scholar 

  5. J.-Y. Koo, G. B. Schuster, Chemiluminescence of diphenoyl peroxide. Chemically initiated electron exchange luminescence. A new general mechanism for chemical production of electronically excited states, J. Am. Chem. Soc., 1978, 100, 4496–4503.

    Article  CAS  Google Scholar 

  6. W. Adam, O. Cueto, Fluorescer-enhanced chemiluminescence of a-peroxylactones via electron exchange, J. Am. Chem. Soc., 1979, 101, 6511–6515.

    Article  CAS  Google Scholar 

  7. G. B. Schuster, S. P. Schmidt, Chemiluminescence of organic-compounds, Adv. Phys. Org. Chem., 1982, 18, 187–238.

    CAS  Google Scholar 

  8. N. J. Turro, M. F. Chow, Chemiluminescent thermolysis of a-peroxylactones, J. Am. Chem. Soc., 1980, 102, 5058–5064.

    Article  CAS  Google Scholar 

  9. S. P. Schmidt, G. B. Schuster, J. Am. Chem. Soc., 1978, 100, 1966–1968.

    Article  CAS  Google Scholar 

  10. W. Adam, G. A. Simpson, F. Yany, Mechanism of direct and rubrene enhanced chemiluminescence during a-peroxylactone decarboxylation, J. Phys. Chem., 1974, 78, 2559–2569.

    Article  CAS  Google Scholar 

  11. J.-Y. Koo, S. P. Schmidt, G. B. Schuster, Bioluminescence of the firefly: Key steps in the formation of the electronically excited state for model systems, Proc. Natl. Acad. Sci. U. S. A., 1978, 75, 30–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Y. Ando, K. Niwa, N. Yamada, T. Enomot, T. Irie, H. Kubota, Y. Ohmiya, H. Akiyama, Firefly bioluminescence quantum yield and colour change by pH-sensitive green emission, Nat. Photonics, 2008, 2, 44–47.

    Article  CAS  Google Scholar 

  13. M. A. Oliveira, F. H. Bartoloni, F. A. Augusto, L. F. M. Ciscato, E. L. Bastos, W. J. Baader, Revision of singlet quantum yields in the catalyzed decomposition of cyclic peroxides, J. Org. Chem., 2012, 77, 10537–10544.

    Article  CAS  Google Scholar 

  14. F. A. Augusto, G. A. Souza, S. P. Souza Júnior, M. Khalid, W. J. Baader, Efficiency of electron transfer initiated chemiluminescence, Photochem. Photobiol., 2013, 89, 1299–1317.

    Article  CAS  PubMed  Google Scholar 

  15. A. P. Schaap, S. D. Gagnon, Chemiluminescence from a phenoxide-substituted 1,2-dioxetane: A model for firefly bioluminescence, J. Am. Chem. Soc., 1982, 104, 3504–3506.

    Article  CAS  Google Scholar 

  16. A. P. Schaap, T. S. Chen, R. S. Handley, R. DeSilva, B. P. Giri, Chemical and enzymatic triggering of 1,2-dioxetanes. 2: Fluoride-induced chemiluminescence from tert-butyldimethylsilyloxy-substituted dioxetanes, Tetrahedron Lett., 1987, 28, 1155–1158.

    Article  CAS  Google Scholar 

  17. M. J. Matsumoto, Advanced chemistry of dioxetane-based chemiluminescent substrates originating from bioluminescence, J. Photochem. Photobiol., C, 2004, 5, 27–53.

    Article  CAS  Google Scholar 

  18. A. L. P. Nery, S. Röpke, L. H. Catalani, W. J. Baader, Fluoride-triggered decomposition of m-silyloxyphenyl-substituted 1,2-dioxetanes by an intramolecular electron transfer (CIEEL) mechanism, Tetrahedron Lett., 1999, 40, 2443–2446.

    Article  CAS  Google Scholar 

  19. A. L. P. Nery, D. Weiss, L. H. Catalani, W. J. Baader, Studies on the intramolecular electron transfer catalyzed thermolysis of 1,2-dioxetanes, Tetrahedron, 2000, 56, 5317–5327.

    Article  CAS  Google Scholar 

  20. S. Beck, H. Köster, Applications of dioxetane chemiluminescent probes to molecular biology, Anal. Chem., 1990, 62, 2258–2270.

    Article  CAS  PubMed  Google Scholar 

  21. J. Cao, R. Lopez, J. M. Thacker, J. Y. Moon, C. Jiang, S. N. S. Morris, J. H. Bauer, P. Tao, R. P. Masonc, A. R. Lippert, Chemiluminescent probes for imaging H2S in living animals, Chem. Sci., 2015, 6, 1979–1985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. W. Adam, D. Reinhardt, C. R. SahaMöller, From the firefly bioluminescence to the dioxetane-based (AMPPD) chemiluminescence immunoassay: A retroanalysis, Analyst, 1996, 121, 1527–1531.

    Article  CAS  Google Scholar 

  23. A. P. Schaap, M. D. Sandison, R. S. Handley, Chemical and enzymatic triggering of 1,2-dioxetanes. 3. Alkaline phosphatase-catalyzed chemiluminescence from an aryl phosphate-substituted dioxetane, Tetrahedron Lett., 1987, 28, 1159–1162.

    Article  CAS  Google Scholar 

  24. A. P. Schaap, R. S. Handley, B. P. Giri, Chemical and enzymatic triggering of 1,2-dioxetanes. 1: Aryl esterase-catalyzed chemiluminescence from a naphthyl acetate-substitute dioxetane, Tetrahedron Lett., 1987, 28, 935–938.

    Article  CAS  Google Scholar 

  25. L. F. M. L. Ciscato, F. H. Bartoloni, D. Weiss, R. Beckert, W. J. Baader, Experimental evidence of the occurrence of intramolecular electron transfer in catalyzed 1,2-dioxetane decomposition, J. Org. Chem., 2010, 75, 6574–6580.

    Article  CAS  PubMed  Google Scholar 

  26. W. Adam, I. Bronstein, R. F. Vasil’ev, A. V. Trofimov, Back electron transfer in electron-exchange chemiluminescence of oxyaryl-substituted spiro-adamantyl dioxetane, an analog of firefly bioluminescence, Russ. Chem. Bull., 2000, 49, 659–665.

    Article  CAS  Google Scholar 

  27. W. Adam, I. Bronstein, R. F. Vasil’ev, A. V. Trofimov, Solvent-cage effect (viscosity dependence) as a diagnostic probe for the mechanism of the intramolecular chemically initiated electron-exchange luminescence (CIEEL) triggered from a spiroadamantyl-substituted dioxetane, J. Am. Chem. Soc., 1999, 121, 958–961.

    Article  CAS  Google Scholar 

  28. W. Adam, M. Matsumoto, A. V. Trofimov, Viscosity dependence of the chemically induced electron-exchange chemiluminescence triggered from a bicyclic dioxetane, J. Am. Chem. Soc., 2000, 122, 8631–8634.

    Article  CAS  Google Scholar 

  29. W. Adam, A. V. Trofimov, The effect of meta versus para substitution on the efficiency of chemiexcitation in the chemically triggered electron-transfer-initiated decomposition of spiroadamantyl dioxetanes, J. Org. Chem., 2000, 65, 6474–6478.

    Article  CAS  PubMed  Google Scholar 

  30. E. L. Bastos, S. M. Silva, W. J. Baader, Solvent cage effects: basis of a general mechanism for efficient chemiluminescence, J. Org. Chem., 2013, 78, 4432–4439.

    Article  CAS  PubMed  Google Scholar 

  31. C. V. Stevani, S. M. Silva, W. J. Baader, Studies on the mechanism of the excitation step in peroxyoxalate system, Eur. J. Org. Chem., 2000, 4037–4046.

    Google Scholar 

  32. S. M. Silva, K. Wagner, D. Weiss, R. Beckert, C. V. Stevani, W. J. Baader, Studies on the chemiexcitation step in peroxyoxalate chemiluminescence using steroid-substituted activators, Luminescence, 2002, 17, 362–369.

    Article  CAS  PubMed  Google Scholar 

  33. L. F. M. L. Ciscato, F. H. Bartoloni, E. L. Bastos, W. J. Baader, Direct kinetic observation of the chemiexcitation step in peroxyoxalate chemiluminescence, J. Org. Chem., 2009, 74, 8974–8979.

    Article  CAS  PubMed  Google Scholar 

  34. C. Tanaka, J. Tanaka, M. Matsumoto, An intramolecular charge/electron transfer chemiluminescence mechanism of oxidophenyl-substituted 1,2-dioxetane, Phys. Chem. Chem. Phys., 2011, 13, 16005–16014.

    Article  CAS  PubMed  Google Scholar 

  35. E. L. Bastos, W. J. Baader, Theoretical studies on thermal stability of alkyl-substituted 1,2-dioxetanes, ARKIVOC, 2007, 42, 257–272.

    Article  Google Scholar 

  36. C. Tanaka, J. Tanaka, Ab initio molecular orbital studies on the chemiluminescence of 1,2-dioxetanes, J. Phys. Chem., 2000, 104, 2078–2090.

    Article  CAS  Google Scholar 

  37. N. Nakatani, J. Hasegawa, H. Nakatsuji, Artificial color tuning of firefly luminescence: Theoretical mutation by tuning electrostatic interactions between protein and luciferin, Chem. Phys. Lett., 2009, 469, 191–194.

    Article  CAS  Google Scholar 

  38. F. Liu, Y. Liu, L. De Vico, R. Lindh, Theoretical study of the chemiluminescent decomposition of dioxetanone, J. Am. Chem. Soc., 2009, 131, 6181–6188.

    Article  CAS  PubMed  Google Scholar 

  39. H. Isobe, S. Yamanaka, S. Kuramitsu, K. Yamaguchi, Regulation mechanism of spin-orbit coupling in charge-transfer-induced luminescence of imidazopyrazinone derivatives, J. Am. Chem. Soc., 2008, 130, 132–149.

    Article  CAS  PubMed  Google Scholar 

  40. H. Isobe, Y. Takano, M. Okumura, S. Kuramitsu, K. Yamaguchi, Mechanistic insights in charge-transfer-induced luminescence of 1,2-dioxetanones with a substituent of low oxidation potential, J. Am. Chem. Soc., 2005, 127, 8667–8679.

    Article  CAS  PubMed  Google Scholar 

  41. L. P. Silva, J. C. G. E. da Silva, Interstate crossing-induced chemiexcitation as the reason for the chemiluminescence of dioxetanones, ChemPhysChem, 2013, 14, 1071–1079.

    Article  CAS  Google Scholar 

  42. L. P. Silva, J. C. G. E. da Silva, Firefly chemiluminescence and bioluminescence: efficient generation of excited states, ChemPhysChem, 2012, 13, 2257–2262.

    Article  CAS  Google Scholar 

  43. B. W. Ding, P. Naumov, Y. J. Liu, Mechanistic insight into marine bioluminescence: Photochemistry of the chemiexcited Cypridina (sea firefly) lumophore, J. Chem. Theory Comput., 2015, 11, 591–599.

    Article  CAS  PubMed  Google Scholar 

  44. L. D. Vico, Y. J. Liu, J. W. Krogh, R. Lindh, Chemiluminescence of 1,2-dioxetane. Reaction mechanism uncovered, J. Phys. Chem. A, 2007, 111, 8013–8019.

    Article  PubMed  CAS  Google Scholar 

  45. F. Ramirez, N. B. Desai, R. B. Mitra, A new synthesis of cyclic diacyl peroxides. Diphenoyl peroxide from phenanthrenequinone via a phosphorane derivative, J. Am. Chem. Soc., 1961, 83, 492–492.

    Article  CAS  Google Scholar 

  46. F. Ramirez, S. B. Bhatia, R. B. Mitra, Z. Hamlet, N. B. Desai, Reaction of the o-quinone-trialkyl phosphite and the a-diketone-trialkyl phosphite 1:1 adducts with ozone and with oxygen. A new synthesis of cyclic diacyl peroxides via oxyphosphoranes, J. Am. Chem. Soc., 1964, 86, 4394–4400.

    Article  CAS  Google Scholar 

  47. W. Adam, L. Blancafort, Steric and stereoelectronic control of the mode selectivity as a function of alkene structure in the reaction with dimethyl alpha-peroxy lactone: Cycloadducts and ene products versus epoxides, J. Am. Chem. Soc., 1996, 118, 4778–4787.

    Article  CAS  Google Scholar 

  48. W. Adam, L. Blancafort, Reaction of alpha-peroxy lactones with C, N, P, and S nucleophiles: Adduct formation and nucleophile oxidation by nucleophilic attack at and biphilic insertion into the peroxide bond, J. Org. Chem., 1997, 62, 1623–1629.

    Article  CAS  Google Scholar 

  49. E. L. Bastos, L. F. M. L. Ciscato, D. Weiss, R. Beckert, W. J. Baader, Comparison of convenient alternative synthetic approaches to 4-[(3-tert-butyldimethylsilyloxy)phenyl]-4- methoxyspiro[1,2-dioxetane-3,2’-adamantane] Synthesis, Synthesis, 2006, 1781–1786.

    Google Scholar 

  50. F. H. Bartoloni, M. A. Oliveira, F. A. Augusto, L. F. M. L. Ciscato, E. L. Bastos, W. J. Baader, Synthesis of unstable cyclic peroxides for chemiluminescence studies, J. Braz. Chem. Soc., 2012, 23, 2093–2103.

    CAS  Google Scholar 

  51. W. Adam, G. Cilento, Four-membered-ring peroxides as excited states equivalents: A new dimension in bioorganic chemistry, Angew. Chem., Int. Ed. Engl., 1983, 22, 529–542.

    Article  Google Scholar 

  52. R. A. Marcus, On the theory of chemiluminescent electron-transfer reactions, J. Chem. Phys., 1965, 43, 2654–2657.

    Article  CAS  Google Scholar 

  53. R. A. Marcus, Chemical and electrochemical electron-transfer theory, Annu. Rev. Phys. Chem., 1964, 15, 155–196.

    Article  CAS  Google Scholar 

  54. R. A. Marcus, Tutorial on rate constants and reorganization energies, Electroanal. Chem., 2000, 483, 2–6.

    Article  CAS  Google Scholar 

  55. N. Sutin, Nuclearelectronic, and frequency factors in electron transfer reactions, Acc. Chem. Res., 1982, 15, 275–282.

    Article  CAS  Google Scholar 

  56. A. K. Doolittle, The dependence of the viscosity of liquids on free-space, J. Appl. Phys., 1951, 22, 1471–1475.

    Article  CAS  Google Scholar 

  57. M. H. Cohen, D. Turnbull, Molecular transport in liquids and glasses, J. Chem. Phys., 1959, 31, 1164–1169.

    Article  CAS  Google Scholar 

  58. D. Gegiou, K. A. Muszkat, E. Fischer, Temperature dependence of photoisomerization. VI. Viscosity effect, J. Am. Chem. Soc., 1968, 90, 12–18.

    Article  CAS  Google Scholar 

  59. V. A. Belyakov, G. F. Fedorova, R. F. Vasilev, The importance and use of energy transfer in the liquid phase chemiluminescence, Spectrosc. Lett., 1978, 11, 549–561.

    Article  CAS  Google Scholar 

  60. F. H. Bartoloni, M. A. Oliveira, L. F. M. L. Ciscato, F. A. Augusto, E. L. Bastos, W. J. Baader, Chemiluminescence efficiency of catalyzed 1,2-dioxetanone decomposition determined by steric effects, J. Org. Chem., 2015, 80, 3745–3751.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm J. Baader.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, M., Souza, S.P., Ciscato, L.F.M.L. et al. Solvent viscosity influence on the chemiexcitation efficiency of inter and intramolecular chemiluminescence systems. Photochem Photobiol Sci 14, 1296–1305 (2015). https://doi.org/10.1039/c5pp00152h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00152h

Navigation