Skip to main content
Log in

Rotifer dynamics in three shallow lakes from the Salado river watershed (Argentina): the potential modulating role of incident solar radiation

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In turbid Pampean lakes, incident solar radiation is a major driver of plankton seasonal dynamics. Higher light availability in summer translates into higher primary production, and therefore more food for zooplankton grazers. However, experimental evidence suggests that food produced under the high irradiance conditions prevailing in summer are less suitable to sustain rotifer population growth than that produced under the lower irradiance conditions typical of winter. Here, we analysed time series datasets corresponding to three shallow lakes from the Salado river watershed. This analysis provided evidence for similar seasonal patterns of rotifer relative abundance over a large geographic area. In addition, we performed life table experiments to test the hypothesis that natural seston produced in winter could sustain higher population growth rates than seston produced in summer. We suggest that the natural seasonal changes in temperature and food generate successive time windows, which may be capitalized by the different grazer species, resulting in predictable phenology of grazer populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. H. E. Zagarese and C. E. Williamson, in The effects of UV radiation in the marine environment, ed. S. de Mora, S. Demers and M. Vernet, Cambridge University Press, London, 2000, p. 279.

  2. L. De Meester, P. Dawidowicz, C. Loose and E. van Gool, in The ecology and evolution of inducible defenses, ed. R. Tollrian and D. Harvell, Princeton University Press, Princeton, New Jersey., 1999, pp. 160–176.

  3. J. D. Orcutt, K. G. Porter, Oecologia, 1984, 63, 300–306.

    Article  PubMed  Google Scholar 

  4. T. C. Bunioto, M. S. Arcifa, Aquat. Ecol., 2007, 41, 569–578.

    Article  CAS  Google Scholar 

  5. T. Weisse, H. Muller, R. A. L. Pinto-Coelho, A. Schweizer, D. Springmann, G. Baldringer, Limnol. Oceanogr., 1990, 35, 781–794.

    Article  Google Scholar 

  6. N. Diovisalvi, V. Y. Bohn, M. C. Piccolo, G. M. E. Perillo, C. Baigún, H. E. Zagarese, Hydrobiologia, 2015, 752, 5–20.

    Article  CAS  Google Scholar 

  7. A. S. M. Aoyagui, C. C. Bonecker, Acta Sci., Biol. Sci., 2004, 26, 385–406.

    Article  Google Scholar 

  8. B. E. Modenutti, Hydrobiologia, 1998, 387/388, 259–265.

    Article  Google Scholar 

  9. N. Neschuk, M. Claps, N. Gabellone, Ann. Limnol. - Int. J. Limnol., 2009, 38, 191–198.

    Article  Google Scholar 

  10. D. Kuczynski, Hydrobiologia, 1991, 215, 135–152.

    Article  Google Scholar 

  11. M. C. Claps, N. A. Gabellone, H. H. Benítez, Ann. Limnol. - Int. J. Limnol., 2004, 40, 201–210.

    Article  Google Scholar 

  12. R. Adrian, N. Walz, T. Hintze, S. Hoeg, R. Rusche, Freshwater Biol., 1999,.

    Google Scholar 

  13. M. Devetter, Biologia, 2011, 66, 662–668.

    Article  Google Scholar 

  14. M. Devetter, Hydrobiologia, 1998, 387/388, 171–178.

    Article  Google Scholar 

  15. M. Winder, D. E. Schindler, Global Change Biol., 2004, 10, 1844–1856.

    Article  Google Scholar 

  16. N. Diovisalvi, G. E. Salcedo Echeverry, L. Lagomarsino, H. E. Zagarese, Hydrobiologia, 2015, 752, 125–137.

    Article  CAS  Google Scholar 

  17. A. Torremorell, M. Llames, G. Pérez, R. Escaray, J. Bustingorry, H. Zagarese, Freshwater Biol., 2009, 54, 437–449.

    Article  Google Scholar 

  18. L. Lagomarsino, G. L. Pérez, R. Escaray, J. Bustingorry, H. E. Zagarese, Fundam. Appl. Limnol, 2011, 178, 191–201.

    Article  CAS  Google Scholar 

  19. U. Gaedke, S. Hochstadter, D. Straile, Ecol. Monogr., 2002, 72, 616.

    Article  Google Scholar 

  20. J. Urabe, M. Kyle, W. Makino, T. Yoshida, T. Andersen, J. Elser, Ecology, 2002, 83, 619–627.

    Article  Google Scholar 

  21. G. Pérez, E. Llames, L. Lagomarsino, H. Zagarese, Photochem. Photobiol., 2011, 87, 659–670.

    Article  PubMed  CAS  Google Scholar 

  22. M. E. Llames, L. Lagomarsino, N. Diovisalvi, P. Fermani, A. M. Torremorell, G. Perez, F. Unrein, J. Bustingorry, R. Escaray, M. Ferraro, H. E. Zagarese, J. Plankton Res., 2009, 31, 1517–1529.

    Article  Google Scholar 

  23. P. Starkweather, Hydrobiologia, 1980, 72, 63–72.

    Article  Google Scholar 

  24. N. Walz, in Evolutionary ecology of freshwater animals, Birkhäuser, Basel, 1997, pp. 119–149.

    Book  Google Scholar 

  25. R. S. Stemberger, J. J. Gilbert, Ecology, 1985, 66, 1151–1159.

    Article  Google Scholar 

  26. J. Korstad, Y. Olsen, O. Vadstein, Hydrobiologia, 1989, 186/187, 43–50.

    Article  Google Scholar 

  27. J. Flores-Burgos, S. S. S. Sarma, S. Nandini, Acta Hydrochim. Hydrobiol., 2005, 33, 614–621.

    Article  CAS  Google Scholar 

  28. G. Weithoff, A. Wacker, Funct. Ecol., 2007, 21, 1092–1098.

    Article  Google Scholar 

  29. K. Kirk, Freshwater Biol., 2002, 47, 1089–1096.

    Article  Google Scholar 

  30. N. Walz, Experientia, 1995, 51, 437–453.

    Article  CAS  Google Scholar 

  31. N. Walz, Hydrobiologia, 1987, 147, 209–213.

    Article  Google Scholar 

  32. J. Arora, N. K. Mehra, Hydrobiologia, 2003, 491, 101–109.

    Article  CAS  Google Scholar 

  33. M. J. González, T. M. Frost, Oecologia, 1992, 89, 560–566.

    Article  PubMed  Google Scholar 

  34. R. M. Pinto-coelho, Freshwater Biol., 1998, 40, 159–173.

    Article  Google Scholar 

  35. R. S. Stemberger, M. S. Evans, J. Great Lakes Res., 1984, 10, 417–428.

    Article  Google Scholar 

  36. C. M. Iachetti, M. E. Llames, Hydrobiologia, 2015, 752, 33–46.

    Article  CAS  Google Scholar 

  37. E. L. Pavón-Meza, S. S. S. Sarma, S. Nandini, Hydrobiologia, 2005, 546, 353–360.

    Article  Google Scholar 

  38. N. Diovisalvi, G. Berasain, F. Unrein, D. C. Colautti, P. Fermani, M. E. Llames, A. Torremorell, L. Lagomarsino, G. Pérez, R. Escaray, J. Bustigorry, M. Ferraro, H. Zagarese, Ecol. Aust., 2010, 20, 115–127.

    Google Scholar 

  39. K. Rothhaupt, Limnol. Oceanogr., 1995, 40, 1201–1208.

    Article  CAS  Google Scholar 

  40. K. Kirk, Ecology, 1991, 72, 915–923.

    Article  Google Scholar 

  41. J. Persson, P. Fink, A. Goto, J. M. Hood, J. Jonas, S. Kato, Oikos, 2010, 119, 741–751.

    Article  CAS  Google Scholar 

  42. S. S. S. Sarma, T. R. Rao, Int. Rev. Gesamten Hydrobiol. Hydrogr., 1991, 76, 225–239.

    Article  Google Scholar 

  43. A. M. Rennella, R. Quirós, Hydrobiologia, 2006, 556, 181–191.

    Article  Google Scholar 

  44. A. Ruttner-Kolisko, Plankton Rotifers: Biology & Taxonomy, 1974,.

    Google Scholar 

  45. R. M. Pontin, A key to British freshwater planktonic Rotifera, Freshwater Biological Association, Ambleside, UK, 1978.

    Google Scholar 

  46. W. Koste, Rotatoria: die Radertiere Mitteleuropas: ein Bestimmungswerk begrundet von Max Voigt: Uberordnung Monogononta, Borntraeger, Berlin, 1978.

    Google Scholar 

  47. R. Koenker, K. Hallock, Econom. J. Econom. Soc., 1978, 33–50.

    Google Scholar 

  48. R Development Core Team, 2013,; http://www.R-project.org/.

  49. L. C. Birch, J. Anim. Ecol., 1948, 17, 15–26.

    Article  Google Scholar 

  50. T.R.E. Southwood, Bionomic strategies and population parameters, In Ecological methods, ed. R. M. May, Chapman & Hall, New York, 2nd edn., 1978, pp. 356–387.

    Google Scholar 

  51. J. Rabinovich, in Introducción a la ecología de poblacionales, ed. S. A. Compañía Continental, D. F. México, 1980, p. 313.

  52. J. S. Meyer, C. G. Ingersoll, L. L. McDonald, M. S. Boyce, Ecology, 1986, 67, 1156–1166.

    Article  Google Scholar 

  53. R. La Rossa, N. Kahn, Rev. Invest. Agropecu., 2003, 32, 127–142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio E. Zagarese.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c5pp00125k

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diovisalvi, N., Rennella, A. & Zagarese, H.E. Rotifer dynamics in three shallow lakes from the Salado river watershed (Argentina): the potential modulating role of incident solar radiation. Photochem Photobiol Sci 14, 2007–2013 (2015). https://doi.org/10.1039/c5pp00125k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00125k

Navigation