Skip to main content
Log in

Determination of pyruvic acid concentration using a bioluminescence system from Photobacterium leiognathi

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A novel, highly sensitive and selective bacterial luminescence method for the detection of pyruvic acid (PA) is reported here. This method is based on a reaction system catalyzed by lactate dehydrogenase (LDH) with the bacterial luciferase-FMN:NADH oxidoreductase bioluminescence system in vitro. The reduced nicotinamide adenine dinucleotide (NADH) involved in the LDH reaction system could be quantitatively analyzed by the bioluminescence system. A good linear relationship between the luminescence intensity and pyruvic acid concentration was exhibited within the range of 0.00014–0.001 mol l-1, and the pyruvic acid detection limit was found to be 8.537 × 10-5 mol l-1. This method was successfully applied to the detection of PA in quail serum with a good recovery of over 70%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Huang, Y. Tian, Z. Zhang and C. Peng, J. Chromatogr. B: Biomed. Sci. Appl., 2012, 905, 37–42. DOI: 10.1016/j.jchromb.2012.07.038.

    Article  CAS  Google Scholar 

  2. Y. Li, X. Ju, X. Gao, Y. Zhao and Y. Wu, Anal. Chim. Acta, 2008, 610, 249–256. DOI: 10.1016/j.aca.2008.01.049.

    Article  CAS  Google Scholar 

  3. P. Chen, L. H. Nie and S. Z. Yao, J. Chromatogr. B: Biomed. Sci. Appl., 1995, 673, 153–158.

    Article  CAS  Google Scholar 

  4. H. M. EL and R. H. Thompson, Biochem. J., 1953, 53, 340–347.

    Article  Google Scholar 

  5. X. Lu, W. Huang, F. Ai, Z. Wang and J. Cheng, J. Chromatogr. B: Biomed. Sci. Appl., 2007, 857, 347–351. DOI: 10.1016/j.jchromb.2007.07.042.

    Article  CAS  Google Scholar 

  6. C. I. Rodrigues, L. Marta, R. Maia, M. Miranda, M. Ribeirinho, C. Máguas, J. Food Compos. Anal., 2007, 20, 440–448. DOI: 10.1016/j.jfca.2006.08.005.

    Article  CAS  Google Scholar 

  7. P. Montenegro, I. M. Valente, L. M. Gonçalves, J. A. Rodrigues and A. A. Barros, Anal. Methods, 2011, 3, 1207.

    Article  CAS  Google Scholar 

  8. K. S. Yoo and L. M. Pike, Sci. Hortic., 2001, 89, 249–256. DOI: 10.1016/S0304-4238(00)00196-5.

    Article  CAS  Google Scholar 

  9. I. Nakurte, A. Keisa and N. Rostoks, J. Anal. Methods Chem., 2012, 2012, 1–6. DOI: 10.1155/2012/103575.

    Article  Google Scholar 

  10. W. Li, C. Pan, T. Hou, X. Wang and F. Li, Anal. Methods, 2014, 6, 1645, DOI: 10.1039/c3ay41883a.

    Article  CAS  Google Scholar 

  11. J. E. A. Rodrigues, G. L. Erny, A. S. Barros, V. I. Esteves, T. Brandão, A. A. Ferreira, E. Cabrita and A. M. Gil, Anal. Chim. Acta, 2010, 674, 166–175. DOI: 10.1016/j.aca.2010.06.029.

    Article  CAS  Google Scholar 

  12. C. W. Klampfl, W. Buchberger and P. R. Haddad, J. Chromatogr. A, 2000, 881,, 357–364.

    Article  CAS  Google Scholar 

  13. J. Wang and P. Diao, Electrochim. Acta, 2011, 56, 10159–10165. DOI: 10.1016/j.electacta.2011.08.113.

    Article  CAS  Google Scholar 

  14. P. Kumar Brahman, N. Pandey, S. Nur Topkaya, Talanta, 2015, 134, 554–559.

    Article  Google Scholar 

  15. X. Li, L. Ling, Z. He, G. Song, S. Lu, L. Yuan and Y. Zeng, Microchem. J., 2000, 64, 9–13. DOI: 10.1016/S0026-265X(99)00011-9.

    Article  CAS  Google Scholar 

  16. E. Canbay, A. Habip, G. Kara, Z. Eren and E. Akyilmaz, Food Chem., 2015, 169, 197–202. DOI: 10.1016/j.foodchem.2014.07.140.

    Article  CAS  Google Scholar 

  17. Y. Zhao, X. Gao, Y. Li, X. Ju, J. Zhang and J. Zheng, Talanta, 2008, 76, 265–270. DOI: 10.1016/j.talanta.2008.02.031.

    Article  CAS  Google Scholar 

  18. B. M. Simonet, A. Ríos, M. Valcárcel, TrAC, Trends Anal. Chem., 2003, 22, 605–614.

    Article  CAS  Google Scholar 

  19. A. C. Pappas, M. I. Prodromidis and M. I. Karayannis, Anal. Chim. Acta, 2002, 467, 225–232.

    Article  CAS  Google Scholar 

  20. A. Revzin, K. Sirkar, A. Simonian and M. Pishko, Sens. Actuators, 2002, 81, 359–368.

    Article  CAS  Google Scholar 

  21. R. Morrissey, C. Hill and M. Begley, Trends Food Sci. Technol., 2013, 32, 4–15. DOI: 10.1016/j.tifs.2013.05.001.

    Article  CAS  Google Scholar 

  22. J. Mancini, M. Boylan, R. Soly, A. Graham and E. Meighen, J. Biol. Chem., 1988, 263, 14308–14314.

    Article  CAS  Google Scholar 

  23. Y. Peng, Y. Jin, H. Lin, J. Wang and M. N. Khan, J. Microbiol. Methods, 2014, 98, 99–104. DOI: 10.1016/j.mimet.2014.01.005.

    Article  CAS  Google Scholar 

  24. H. Liu, H. Lin, Q. Mu, X. Lu, J. Wang and M. N. Khan, Innovative Food Sci. Emerging Technol., 2014, 26, 375–380.

    Article  CAS  Google Scholar 

  25. A. Zhu, R. Romero and H. R. Petty, Anal. Biochem., 2010, 396, 146–151. DOI: 10.1016/j.ab.2009.09.017.

    Article  CAS  Google Scholar 

  26. C. Mei, J. Wang, H. Lin and J. Wang, Acta Microbiol. Sin., 2009, 49, (2) 1223–1228.

    CAS  Google Scholar 

  27. J. B. Ewaschuk, J. M. Naylor, W. A. Barabash and G. A. Zello, J. Chromatogr. B: Biomed. Sci. Appl., 2004, 805, 347–351. DOI: 10.1016/j.jchromb.2004.03.004.

    Article  CAS  Google Scholar 

  28. P. K. Brahman, N. Pandey, J. V. S. Kumar, P. Somarouthu, S. Tiwari and K. S. Pitre, Arabian J. Chem., 2014 DOI: 10.1016/j.arabjc.2014.02.003.

    Google Scholar 

  29. J. M. Lin and M. Yamada, Anal. Chem., 2003, 22, 99–107.

    CAS  Google Scholar 

  30. F. Wu, S. Hu, Y. Huang, W. Shi, J. Pan, Q. Li, G. Tang and C. Huang, Anal. Lett., 2006, 39, 1823–1836. DOI: 10.1080/00032710600721456.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingxue Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xuan, G., Lu, X., Wang, J. et al. Determination of pyruvic acid concentration using a bioluminescence system from Photobacterium leiognathi. Photochem Photobiol Sci 14, 1163–1168 (2015). https://doi.org/10.1039/c5pp00118h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00118h

Navigation