Skip to main content
Log in

Bacterial imaging and photodynamic inactivation using zinc(ii)-dipicolylamine BODIPY conjugates

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Targeted imaging and antimicrobial photodynamic inactivation (PDI) are emerging methods for detecting and eradicating pathogenic microorganisms. This study describes two structurally related optical probes that are conjugates of a zinc(ii)-dipicolylamine targeting unit and a BODIPY chromophore. One probe is a microbial targeted fluorescent imaging agent, mSeek, and the other is an oxygen photosensitizing analogue, mDestroy. The conjugates exhibited high fluorescence quantum yield and singlet oxygen production, respectively. Fluorescence imaging and detection studies examined four bacterial strains: E. coli, S. aureus, K. pneumonia, and B. thuringiensis vegetative cells and purified spores. The fluorescent probe, mSeek, is not phototoxic and enabled detection of all tested bacteria at concentrations of ≈100 CFU mL-1 for B. thuringiensis spores, ≈1000 CFU mL−1 for S. aureus and ≈10 000 CFU mL−1 for E. coli. The photosensitizer analogue, mDestroy, inactivated 992–99.99% of bacterial samples and selectively killed bacterial cells in the presence of mammalian cells. However, mDestroy was ineffective against B. thuringiensis spores. Together, the results demonstrate a new two-probe strategy to optimize PDI of bacterial infection/contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PDI:

Photodynamic inactivation

PS:

Photosensitizer

1O2:

Singlet oxygen

ZnDPA:

Zinc(ii)-dipicolylamine

DPB:

1,3-diphenylisobenzofuran

References

  1. B. Spellberg, R. Guidos, D. Gilbert, J. Bradley, H. W. Boucher, W. M. Scheld, J. G. Bartlett, J. Edwards, Jr., The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America, Clin. lnfect. Dis., 2008, 46, 155–164.

    Article  Google Scholar 

  2. E. R. Sydnor, T. M. Perl, Hospital epidemiology and infection control in acute-care settings, Clin. Microbiol. Rev., 2011, 24, 141–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. F. F. Sperandio, Y. Y. Huang, M. R. Hamblin, Antimicrobial photodynamic therapy to kill Gram-negative bacteria, Recent Pat. Anti-infect. Drug Discovery, 2013, 8, 108–120.

    Article  CAS  Google Scholar 

  4. J. L. Wardlaw, T. J. Sullivan, C. N. Lux, F. W. Austin, Photodynamic therapy against common bacteria causing wound and skin infections, Vet. J., 2012, 192, 374–377.

    Article  CAS  PubMed  Google Scholar 

  5. K. Konopka, T. Goslinski, Photodynamic therapy in dentistry, J. Dent. Res., 2007, 86, 694–707.

    Article  CAS  PubMed  Google Scholar 

  6. S. Noimark, C. W. Dunnill, I. P. Parkin, Shining light on materials-a self-sterilising revolution, Adv. Drug Delivery Rev., 2013, 65, 570–580.

    Article  CAS  Google Scholar 

  7. T. Maisch, S. Hackbarth, J. Regensburger, A. Felgentrager, W. Baumler, M. Landthaler, B. Roder, Photodynamic inactivation of multi-resistant bacteria (PIB) - a new approach to treat superficial infections in the 21st century, J. Dtsch. Dermatol. Ges., 2011, 9, 360–366.

    PubMed  Google Scholar 

  8. F. M. Lauro, P. Pretto, L. Covolo, G. Jori, G. Bertoloni, Photoinactivation of bacterial strains involved in periodontal diseases sensitized by porphycene-polylysine conjugates, Photochem. Photobiol. Sci., 2002, 1, 468–470.

    Article  CAS  PubMed  Google Scholar 

  9. N. Komerik, M. Wilson, S. Poole, The effect of photodynamic action on two virulence factors of gram-negative bacteria, Photochem. Photobiol., 2000, 72, 676–680.

    Article  CAS  PubMed  Google Scholar 

  10. T. Dai, Y. Y. Huang, M. R. Hamblin, Photodynamic therapy for localized infections–state of the art, Photodiagn. Photodyn. Ther., 2009, 6, 170–188.

    Article  CAS  Google Scholar 

  11. Z. Lim, J. L. Cheng, T. W. Lim, E. G. Teo, J. Wong, S. George, A. Kishen, Light activated disinfection: an alternative endodontic disinfection strategy, Aust. Dent. J., 2009, 54, 108–114.

    Article  CAS  PubMed  Google Scholar 

  12. G. A. Johnson, N. Muthukrishnan, J. P. Pellois, Photoinactivation of Gram positive and Gram negative bacteria with the antimicrobial peptide (KLAKLAK)(2) conjugated to the hydrophilic photosensitizer eosin Y, Bioconjugate Chem., 2013, 24, 114–123.

    Article  CAS  Google Scholar 

  13. F. Liu, A. Soh Yan Ni, Y. Lim, H. Mohanram, S. Bhattacharjya, B. Xing, Lipopolysaccharide neutralizing peptide-porphyrin conjugates for effective photoinactivation and intracellular imaging of Gram-negative bacteria strains, Bioconjugate Chem., 2012, 23, 1639–1647.

    Article  CAS  Google Scholar 

  14. M. Bhatti, A. MacRobert, B. Henderson, P. Shepherd, J. Cridland, M. Wilson, Antibody-targeted lethal photosensitization of Porphyromonas gingivalis, Antimicrob. Agents Chemother., 2000, 44, 2615–2618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M. L. Embleton, S. P. Nair, B. D. Cookson, M. Wilson, Selective lethal photosensitization of methicillin-resistant Staphylococcus aureus using an IgG-tin(IV) chlorin e6 conjugate, J. Antimicrob. Chemother., 2002, 50, 857–864.

    Article  CAS  PubMed  Google Scholar 

  16. M. L. Embleton, S. P. Nair, B. D. Cookson, M. Wilson, Antibody-directed photodynamic therapy of methicillin resistant Staphylococcus aureus, Microb. Drug Resist., 2004, 10, 92–97.

    Article  CAS  PubMed  Google Scholar 

  17. M. L. Embleton, S. P. Nair, W. Heywood, D. C. Menon, B. D. Cookson, M. Wilson, Development of a novel targeting system for lethal photosensitization of antibiotic-resistant strains of Staphylococcus aureus, Antimicrob. Agents Chemother., 2005, 49, 3690–3696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. N. S. Soukos, L. A. Ximenez-Fyvie, M. R. Hamblin, S. S. Socransky, T. Hasan, Targeted antimicrobial photochemotherapy, Antimicrob. Agents Chemother., 1998, 42, 2595–2601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. G. P. Tegos, M. Anbe, C. Yang, T. N. Demidova, M. Satti, P. Mroz, S. Janjua, F. Gad, M. R. Hamblin, Protease-stable polycationic photosensitizer conjugates between polyethyleneimine and chlorin(e6) for broad-spectrum antimicrobial photoinactivation, Antimicrob. Agents Chemother., 2006, 50, 1402–1410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. C. L. Zhu, Q. O. Yang, L. B. Liu, F. T. Lv, S. Y. Li, G. Q. Yang, S. Wang, Multifunctional cationic poly(p-phenylene vinylene) polyelectrolytes for selective recognition, imaging, and killing of bacteria over mammalian cells, Adv. Mater., 2011, 23, 4805–4810.

    Article  CAS  PubMed  Google Scholar 

  21. E. J. O’Neil, B. D. Smith, Anion recognition using dimetallic coordination complexes, Coord. Chem. Rev., 2006, 250, 3068–3080.

    Article  CAS  Google Scholar 

  22. R. E. Hancock, Alterations in outer membrane permeability, Annu. Rev. Microbiol., 1984, 38, 237–264.

    Article  CAS  PubMed  Google Scholar 

  23. W. M. Leevy, J. R. Johnson, C. Lakshmi, J. Morris, M. Marquez, B. D. Smith, Selective recognition of bacterial membranes by zinc(II)-coordination complexes, Chem. Commun., 2006, 1595–1597.

    Google Scholar 

  24. D. R. Rice, A. J. Plaunt, S. Turkyilmaz, M. Smith, Y. Wang, M. Rusckowski, B. D. Smith, Evaluation of 111[In]-labeled zinc-dipicolylamine tracers for SPECT imaging of bacterial infection, Mol. Imaging Biol., 2014, 1–10.

    Google Scholar 

  25. A. G. White, N. Fu, W. M. Leevy, J. J. Lee, M. A. Blasco, B. D. Smith, Optical imaging of bacterial infection in living mice using deep-red fluorescent squaraine rotaxane probes, Bioconjugate Chem., 2010, 21, 1297–1304.

    Article  CAS  Google Scholar 

  26. A. G. White, B. D. Gray, K. Y. Pak, B. D. Smith, Deep-red fluorescent imaging probe for bacteria, Bioorg. Med. Chem. Lett., 2012, 22, 2833–2836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. K. M. DiVittorio, W. M. Leevy, E. J. O’Neil, J. R. Johnson, S. Vakulenko, J. D. Morris, K. D. Rosek, N. Serazin, S. Hilkert, S. Hurley, M. Marquez, B. D. Smith, Zinc(II) coordination complexes as membrane-active fluorescent probes and antibiotics, ChemBioChem, 2008, 9, 286–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. T. Yogo, Y. Urano, Y. Ishitsuka, F. Maniwa, T. Nagano, Highly efficient and photostable photosensitizer based on BODIPY chromophore, J. Am. Chem. Soc., 2005, 127, 12162–12163.

    Article  CAS  PubMed  Google Scholar 

  29. T. E. Wood, A. Thompson, Advances in the chemistry of dipyrrins and their complexes, Chem. Rev., 2007, 107, 1831–1861.

    Article  CAS  PubMed  Google Scholar 

  30. H. G. Jang, M. Park, J. S. Wishnok, S. R. Tannenbaum, G. N. Wogan, Hydroxyl-specific fluorescence labeling of ABP-deoxyguanosine, PhIP-deoxyguanosine, and AFB1-formamidopyrimidine with BODIPY-FL, Anal. Biochem., 2006, 359, 151–160.

    Article  CAS  PubMed  Google Scholar 

  31. L. Bonardi, H. Kanaan, F. Camerel, P. Jolinat, P. Retailleau, R. Ziessel, Fine-tuning of yellow or red photo- and electroluminescence of functional difluoro-boradiazaindacene films, Adv. Funct. Mater., 2008, 18, 401–413.

    Article  CAS  Google Scholar 

  32. S. G. Awuah, J. Polreis, V. Biradar, Y. You, Singlet oxygen generation by novel NIR BODIPY dyes, Org. Lett., 2011, 13, 3884–3887.

    Article  CAS  PubMed  Google Scholar 

  33. E. Diez-Barra, J. C. Garcia-Martinez, S. Merino, R. del Rey, J. Rodriguez-Lopez, P. Sanchez-Verdu, J. Tejeda, Synthesis, characterization, and optical response of dipolar and non-dipolar poly(phenylenevinylene) dendrimers, J. Org. Chem., 2001, 66, 5664–5670.

    Article  CAS  PubMed  Google Scholar 

  34. S. Yamaguchi, I. Yoshimura, T. Kohira, S. Tamaru, I. Hamachi, Cooperation between artificial receptors and supramolecular hydrogels for sensing and discriminating phosphate derivatives, J. Am. Chem. Soc., 2005, 127, 11835–11841.

    Article  CAS  PubMed  Google Scholar 

  35. S. Ozlem, E. U. Akkaya, Thinking outside the silicon box: molecular and logic as an additional layer of selectivity in singlet oxygen generation for photodynamic therapy, J. Am. Chem. Soc., 2009, 131, 48–49.

    Article  CAS  PubMed  Google Scholar 

  36. A. B. Nepomnyashchii, A. J. Pistner, A. J. Bard, J. Rosenthal, Synthesis, photophysics, electrochemistry and electrogenerated chemiluminescence of PEG-modified BODIPY dyes in organic and aqueous solutions, J. Phys. Chem. C, 2013, 117, 5599–5609.

    Article  CAS  Google Scholar 

  37. T. L. Buhr, D. C. McPherson, B. W. Gutting, Analysis of broth-cultured Bacillus atrophaeus and Bacillus cereus spores, J. Appl. Microbiol., 2008, 105, 1604–1613.

    Article  CAS  PubMed  Google Scholar 

  38. E. M. Peck, C. G. Collins, B. D. Smith, Thiosquaraine rotaxanes: synthesis, dynamic structure, and oxygen photosensitization, Org. Lett., 2013, 15, 2762–2765.

    Article  CAS  PubMed  Google Scholar 

  39. Y. Cakmak, S. Kolemen, S. Duman, Y. Dede, Y. Dolen, B. Kilic, Z. Kostereli, L. T. Yildirim, A. L. Dogan, D. Guc, E. U. Akkaya, Designing excited states: theory-guided access to efficient photosensitizers for photodynamic action, Angew. Chem., Int. Ed., 2011, 50, 11937–11941.

    Article  CAS  Google Scholar 

  40. D. Dulin, A. Le Gall, K. Perronet, N. Soler, D. Fourmy, S. Yoshizawa, P. Bouyer, N. Westbrook, Reduced photobleaching of BODIPY-FL, Phys. Proc., 2010, 3, 1563–1567.

    Article  CAS  Google Scholar 

  41. I. Swiecicka, D. K. Bideshi, B. A. Federici, Novel isolate of Bacillus thuringiensis subsp. thuringiensis that produces a quasicuboidal crystal of Cry1Ab21 toxic to larvae of Trichoplusia ni, Appl. Environ. Microbiol., 2008, 74, 923–930.

    Article  CAS  PubMed  Google Scholar 

  42. A. Magge, B. Setlow, A. E. Cowan, P. Setlow, Analysis of dye binding by and membrane potential in spores of Bacillus species, J. Appl. Microbiol., 2009, 106, 814–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. J. Moan, Q. Peng, An outline of the hundred-year history of PDT, Anticancer Res., 2003, 23, 3591–3600.

    PubMed  Google Scholar 

  44. M. R. Hamblin, T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease?, Photochem. Photobiol. Sci., 2004, 3, 436–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. D. P. Valenzeno, J. P. Pooler, Cell-membrane photo-mondification - relative effects of halogenated fluorosciens for photohemolysis, Photochem. Photobiol., 1982, 35, 343–350.

    Article  CAS  PubMed  Google Scholar 

  46. J. P. Pooler, Photooxidation of cell-membranes using eosin derivatives that locate in lipid or protein to study the role of diffusible intermediates, Photochem. Photobiol., 1989, 50, 55–68.

    Article  CAS  PubMed  Google Scholar 

  47. M. N. Usacheva, M. C. Teichert, M. A. Biel, Comparison of the methylene blue and toluidine blue photobactericidal efficacy against Gram-positive and Gram-negative microorganisms, Lasers Surg. Med., 2001, 29, 165–173.

    Article  CAS  PubMed  Google Scholar 

  48. T. Maisch, C. Bosl, R. M. Szeimies, N. Lehn, C. Abels, Photodynamic effects of novel XF porphyrin derivatives on prokaryotic and eukaryotic cells, Antimicrob. Agents Chemother., 2005, 49, 1542–1552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Y. Nitzan, M. Gutterman, Z. Malik, B. Ehrenberg, Inactivation of Gram-negative bacteria by photosensitized porphyrins, Photochem. Photobiol., 1992, 55, 89–96.

    Article  CAS  PubMed  Google Scholar 

  50. Z. Q. Xu, M. T. Flavin, J. Flavin, Combating multidrug-resistant Gram-negative bacterial infections, Expert Opin. Invest. Drugs, 2014, 23, 163–182.

    Article  CAS  Google Scholar 

  51. M. J. Leggett, G. McDonnell, S. P. Denyer, P. Setlow, J. Y. Maillard, Bacterial spore structures and their protective role in biocide resistance, J. Appl. Microbiol., 2012, 113, 485–498.

    Article  CAS  PubMed  Google Scholar 

  52. J. A. Tufts, M. W. Calfee, S. D. Lee, S. P. Ryan, Bacillus thuringiensis as a surrogate for Bacillus anthracis in aerosol research, World. J. Microbiol. Biotechnol., 2014, 30, 1453–1461.

    Article  PubMed  Google Scholar 

  53. S. Ghosal, T. J. Leighton, K. E. Wheeler, I. D. Hutcheon, P. K. Weber, Spatially resolved characterization of water and ion incorporation in Bacillus spores, Appl. Environ. Microbiol., 2010, 76, 3275–3282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. J. Errington, Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis, Microbiol. Rev., 1993, 57, 1–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. B. Senthil Kumar, Z. Ralte, A. K. Passari, V. K. Mishra, B. M. Chutia, B. P. Singh, G. Guruswami, S. K. Nachimuthu, Characterization of Bacillus thuringiensis Cry1 class proteins in relation to their insecticidal action, Interdiscip. Sci., 2013, 5, 127–135.

    Article  CAS  Google Scholar 

  56. G. Pesce, G. Rusciano, A. Sasso, R. Isticato, T. Sirec, E. Ricca, Surface charge and hydrodynamic coefficient measurements of Bacillus subtilis spore by optical tweezers, Colloids Surf., B, 2014, 116, 568–575.

    Article  CAS  Google Scholar 

  57. A. Terada, A. Yuasa, T. Kushimoto, S. Tsuneda, A. Katakai, M. Tamada, Bacterial adhesion to and viability on positively charged polymer surfaces, Microbiology, 2006, 152, 3575–3583.

    Article  CAS  PubMed  Google Scholar 

  58. M. Schafer, C. Schmitz, R. Facius, G. Horneck, B. Milow, K. H. Funken, J. Ortner, Systematic study of parameters influencing the action of rose bengal with visible light on bacterial cells: comparison between the biological effect and singlet-oxygen production, Photochem. Photobiol., 2000, 71, 514–523.

    Article  CAS  PubMed  Google Scholar 

  59. T. N. Demidova, M. R. Hamblin, Photodynamic inactivation of Bacillus spores, mediated by phenothiazinium dyes, Appl. Environ. Microbiol., 2005, 71, 6918–6925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. A. Oliveira, A. Almeida, C. M. Carvalho, J. P. Tome, M. A. Faustino, M. G. Neves, A. C. Tome, J. A. Cavaleiro, A. Cunha, Porphyrin derivatives as photosensitizers for the inactivation of Bacillus cereus endospores, J. Appl. Microbiol., 2009, 106, 1986–1995.

    Article  CAS  PubMed  Google Scholar 

  61. P. Setlow, Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals, J. Appl. Microbiol., 2006, 101, 514–525.

    Article  CAS  PubMed  Google Scholar 

  62. H. Chirakkal, M. O’Rourke, A. Atrih, S. J. Foster, A. Moir, Analysis of spore cortex lytic enzymes and related proteins in Bacillus subtilis endospore germination, Microbiology, 2002, 148, 2383–2392.

    Article  CAS  PubMed  Google Scholar 

  63. P. A. Pinzon-Arango, R. Nagarajan, T. A. Camesano, Effects of L-alanine and inosine germinants on the elasticity of Bacillus anthracis spores, Langmuir, 2010, 26, 6535–6541.

    Article  CAS  PubMed  Google Scholar 

  64. S. Moller-Tank, W. Maury, Phosphatidylserine receptors: enhancers of enveloped virus entry and infection, Virology, 2014, 468–470, 565–580.

    Article  PubMed  CAS  Google Scholar 

  65. J. L. Wanderley, P. E. Thorpe, M. A. Barcinski, L. Soong, Phosphatidylserine exposure on the surface of Leishmania amazonensis amastigotes modulates in vivo infection and dendritic cell function, Parasite Immunol., 2013, 35, 109–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. D. Magde, R. Wong, P. G. Seybold, Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields, Photochem. Photobiol., 2002, 75, 327–334.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley D. Smith.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c5pp00100e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rice, D.R., Gan, H. & Smith, B.D. Bacterial imaging and photodynamic inactivation using zinc(ii)-dipicolylamine BODIPY conjugates. Photochem Photobiol Sci 14, 1271–1281 (2015). https://doi.org/10.1039/c5pp00100e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00100e

Navigation