Skip to main content
Log in

Enhancement of antiproliferative activity by phototautomerization of anthrylphenols

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

An antiproliferative investigation was conducted on 3 human cancer cell lines, HCT 116 (colon), MCF-7 (breast), and H 460 (lung), on a series of 4 anthrylphenols in the dark and upon exposure to light (350 nm). 9-(2-Hydroxyphenyl)anthracene (1) moderately inhibited proliferation, but irradiation considerably enhanced the effect. The other anthracenes 4–6 exhibited antiproliferative activity in the dark, which was not enhanced upon irradiation. The enhancement of the antiproliferative effect on the irradiation of 1 was rationalized as being due to the formation of quinone methide (QM 2) by excited state proton transfer. QM 2 acts as an electrophilic species capable of reacting with biological molecules. Although QM 2 reacts with nucleotides, the adducts could not be isolated. On the contrary, cysteine adduct 8 was isolated and characterized, whereas the adducts with glycine, serine and tripeptide glutathione were characterized by MS. Non-covalent binding of 1 to DNA and bovine serum albumin was demonstrated by UV-vis, fluorescence and CD spectroscopy. However, a straightforward conclusion regarding the DNA or protein alkylating (damaging) ability of 2 could not be drawn. The results obtained by the irradiation of 1 in the presence of DNA, amino acids and peptides, cell cycle perturbation analysis, and in vitro translation of GFP suggest that the effect is not only due to the damage of DNA but also due to the impact on the cellular proteins. Considering that to date all QM agents were assumed to target DNA dominantly, this is an important finding with an impact on the further development of anticancer agents based on QMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. Quinone Methides, ed. S. E. Rokita, Wiley, Hoboken, USA, 2009.

    Google Scholar 

  2. R. Van De Water and T. R. R. Pettus, o-Quinone methides: intermediates underdeveloped and underutilized in organic synthesis, Tetrahedron, 2002, 58, 5367–5405.

    Article  Google Scholar 

  3. T. P. Pathak and M. S. Sigman, Applications of ortho-Quinone Methide Intermediates in Catalysis and Asymmetric Synthesis, J. Org. Chem., 2011, 76, 9210–9215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M. Freccero, Quinone Methides as Alkylating and Cross-Linking Agents, Mini-Rev. Org. Chem., 2004, 1, 403–415.

    Article  CAS  Google Scholar 

  5. P. Wang, Y. Song, L. Zhang, H. He and X. Zhou, Quinone Methide derivatives: Important Intermediates to DNA Alkylating and DNA Cross-linking Actions, Curr. Med. Chem., 2005, 12, 2893–2913.

    Article  CAS  PubMed  Google Scholar 

  6. I. A. McDonald, P. L. Nyce, M. J. Jung and J. S. Sabol, Syntheses of DL-2-fluoromethy-p-tyrosine and DL-2-difluoromethyl-p-tyrosine as potential inhibitors of tyrosine hydroxylase, Tetrahedron Lett., 1991, 32, 887–890.

    Article  CAS  Google Scholar 

  7. D. Cabaret, S. A. Adediran, M. J. G. Gonzalez, R. F. Pratt and M. Wakselman, Synthesis and Reactivity with ß-Lactamases of “Penicillin-like” Cyclic Depsipeptides, J. Org. Chem., 1999, 64, 713–720.

    Article  CAS  PubMed  Google Scholar 

  8. S.-K. Chung, J. W. Lee, N. Y. Shim and T. W. Kwon, p-Quinone methides as geometric analogues of quinolone carboxylate antibacterials, Bioorg. Med. Chem. Lett., 1996, 6, 1309–1312.

    Article  CAS  Google Scholar 

  9. Q. Wang, U. Dechert, F. Jirik and S. G. Withers, Suicide Inactivation of Human Prostatic Acid Phosphatase and a Phosphotyrosine Phosphatase, Biochem. Biophys. Res. Commun., 1994, 200, 577–583.

    Article  CAS  PubMed  Google Scholar 

  10. J. K. Myers, J. D. Cohen and T. S. Widlanski, Substituent Effects on the Mechanism-Based Inactivation of Prostatic Acid Phosphatase, J. Am. Chem. Soc., 1995, 117, 11049–11054.

    Article  CAS  Google Scholar 

  11. J. K. Storwell, T. S. Widlanski, T. G. Kutaleladze and R. T. Raines, Mechanism-based inactivation of ribonuclease A, J. Org. Chem., 1995, 60, 6930–6936.

    Article  Google Scholar 

  12. S. E. Rokita, J. Yang, P. Pande and W. A. Greenberg, Quinone Methide Alkylation of Deoxycytidine, J. Org. Chem., 1997, 62, 3010–3012.

    Article  CAS  PubMed  Google Scholar 

  13. W. F. Veldhuyzen, A. J. Shallop, R. A. Jones and S. E. Rokita, Thermodynamic versus Kinetic Products of DNA Alkylation as Modeled by Reaction of Deoxyadenosine, J. Am. Chem. Soc., 2001, 123, 11126–11132.

    Article  CAS  PubMed  Google Scholar 

  14. E. E. Weinert, K. N. Frankenfield and S. E. Rokita, Time-Dependent Evolution of Adducts Formed Between Deoxynucleosides and a Model Quinone Methide, Chem. Res. Toxicol., 2005, 18, 1364–1370.

    Article  CAS  PubMed  Google Scholar 

  15. E. E. Weinert, D. Ruggero, S. Colloredo-Melz, K. N. Frankenfield, C. H. Mitchell, M. Freccero and S. E. Rokita, Substituents on Quinone Methides Strongly Modulate Formation and Stability of their Nucleophilic Adducts, J. Am. Chem. Soc., 2006, 128, 11940–11947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Chatterjee and S. E. Rokita, The Role of a Quinone Methide in the Sequence Specific Alkylation of DNA, J. Am. Chem. Soc., 1994, 116, 1690–1697.

    Article  CAS  Google Scholar 

  17. Q. Zeng and S. E. Rokita, Tandem Quinone Methide Generation for Cross-Linking DNA., J. Org. Chem., 1996, 61, 9080–9081.

    Article  CAS  Google Scholar 

  18. P. Pande, J. Shearer, J. Yang, W. A. Greenberg and S. E. Rokita, Alkylation of Nucleic Acids by a Model Quinone Methide, J. Am. Chem. Soc., 1999, 121, 6773–6779.

    Article  CAS  Google Scholar 

  19. W. F. Veldhuyzen, P. Pande and S. E. Rokita, A Transient Product of DNA Alkylation can be Stabilized by Binding Localization, J. Am. Chem. Soc., 2003, 125, 14005–14013.

    Article  CAS  PubMed  Google Scholar 

  20. V. S. Li and H. Kohn, Studies on the Bonding Specificity for Mitomycin C-DNA Monoalkylation Processes, J. Am. Chem. Soc., 1991, 113, 275–283.

    Article  Google Scholar 

  21. I. Han, D. J. Russell and H. Kohn, Studies on the Mechanism of Mitomycin C(1) Electrophilic Transformations: Structure-Reactivity Relationships, J. Org. Chem., 1992, 57, 1799–1807.

    Article  CAS  Google Scholar 

  22. M. Tomasz, A. Das, K. S. Tang, M. G. J. Ford, A. Minnock, S. M. Musser and M. J. Waring, The Purine 2-Amino Group as the Critical Recognition Element for Sequence-Specific Alkylation and Cross-Linking of DNA by Mitomycin C, J. Am. Chem. Soc., 1998, 120, 11581–11593.

    Article  CAS  Google Scholar 

  23. M. Nadai, F. Doria, M. Di Antonio, G. Sattin, L. Germani, C. Percivalle, M. Palumbo, S. N. Richter and M. Freccero, Naphthalene diimide scaffolds with dual reversible and covalent interaction properties towards G-quadruplex, Biochemie, 2011, 93, 1328–1340.

    Article  CAS  Google Scholar 

  24. F. Doria, M. Nadai, M. Folini, M. Di Antonio, L. Germani, C. Percivalle, C. Sissi, N. Zaffaroni, S. Alcaro, A. Artese, S. N. Richter and M. Freccero, Hybrid ligand–alkylating agents targeting telomeric G-quadruplex structures, Org. Biomol. Chem., 2012, 10, 2798–2806.

    Article  CAS  PubMed  Google Scholar 

  25. F. Doria, M. Nadai, M. Folini, M. Scalabrin, L. Germani, G. Sattin, M. Mella, M. Palumbo, N. Zaffaroni, D. Fabris, M. Freccero and S. N. Richter, Targeting Loop Adenines in G-Quadruplex by a Selective Oxirane, Chem.–Eur. J., 2013, 19, 78–81.

    Article  CAS  PubMed  Google Scholar 

  26. H. Wang, Quinone Methides and Their Biopolymer Conjugates as Reversible DNA Alkylating Agents, Curr. Org. Chem., 2014, 18, 44–60.

    Article  CAS  Google Scholar 

  27. N. Basaric, K. Mlinaric-Majerski and M. Kralj, Quinone Methides: Photochemical Generation and its Application in Biomedicine, Curr. Org. Chem., 2014, 18, 3–18.

    Article  CAS  Google Scholar 

  28. C. Percivalle, F. Doria and M. Freccero, Quinone Methides as DNA Alkylating Agents: An Overview on Efficient Activation Protocols for Enhanced Target Selectivity, Curr. Org. Chem., 2014, 18, 19–43.

    Article  CAS  Google Scholar 

  29. L. Diao, C. Yang and P. Wan, Quinone Methide Intermediates from the Photolysis of Hydroxybenzyl Alcohols in Aqueous Solution, J. Am. Chem. Soc., 1995, 117, 5369–5370.

    Article  CAS  Google Scholar 

  30. K. Nakatani, N. Higashida and I. Saito, Highly Efficient Photochemical Generation of o-Quinone Methide from Mannich Bases of Phenol Derivatives, Tetrahedron Lett., 1997, 38, 5005–5008.

    Article  CAS  Google Scholar 

  31. E. Modica, R. Zanaletti, M. Freccero and M. Mella, Alkylation of Amino Acids and Glutathione in Water by o-Quinone Methide. Reactivity and Selectivity, J. Org. Chem., 2001, 66, 41–52.

    Article  CAS  PubMed  Google Scholar 

  32. M. Lukeman and P. Wan, Excited State Intramolecular Proton Transfer (ESIPT) in 2-Phenylphenol: An Example of Proton Transfer to a Carbon of an Aromatic Ring, Chem. Commun., 2001, 1004–1005.

    Google Scholar 

  33. M. Lukeman and P. Wan, A New Type of Excited-State Intramolecular Proton Transfer: Proton Transfer from Phenol OH to a Carbon Atom of an Aromatic Ring Observed for 2-Phenylphenol, J. Am. Chem. Soc., 2002, 124, 9458–9464.

    Article  CAS  PubMed  Google Scholar 

  34. M. Lukeman and P. Wan, Excited-State Intramolecular Proton Transfer in o-Hydroxybiaryls: A New Route to Dihydroaromatic Compounds, J. Am. Chem. Soc., 2003, 125, 1164–1165.

    Article  CAS  PubMed  Google Scholar 

  35. M. Flegel, M. Lukeman and P. Wan, Photochemistry of 1,1’-Bi-2-naphthol (BINOL)-ESIPT is Responsible for Photoracemization and Photocyclization, Can. J. Chem., 2008, 86, 161–169.

    Article  CAS  Google Scholar 

  36. M. Flegel, M. Lukeman, L. Huck and P. Wan, Photoaddition of Water and Alcohols to the Anthracene Moiety of 9-(2’-Hydroxyphenyl)anthracene via Formal Excited State Intramolecular Proton Transfer, J. Am. Chem. Soc., 2004, 126, 7890–7897.

    Article  CAS  PubMed  Google Scholar 

  37. N. Basaric and P. Wan, Competing Excited State Intramolecular Proton Transfer Pathways from Phenol to Anthracene Moieties, J. Org. Chem., 2006, 71, 2677–2686.

    Article  CAS  PubMed  Google Scholar 

  38. Y.-H. Wang and P. Wan, Excited State Intramolecular Proton Transfer (ESIPT) in Dihydroxyphenyl Anthracenes, Photochem. Photobiol. Sci., 2011, 10, 1934–1944.

    Article  CAS  PubMed  Google Scholar 

  39. P. Wang, R. Liu, X. Wu, H. Ma, X. Cao, P. Zhou, J. Zhang, X. Weng, X.-L. Zhang, J. Qi, X. Zhou and L. Weng, A potent, Water-Soluble and Photoinducible DNA Cross-Linking Agent, J. Am. Chem. Soc., 2003, 125, 1116–1117.

    Article  CAS  PubMed  Google Scholar 

  40. S. N. Richter, S. Maggi, S. Colloredo Mels, M. Palumbo and M. Freccero, Binol Quinone Methides as Bisalkylating and DNA Cross-Linking agents, J. Am. Chem. Soc., 2004, 126, 13973–13979.

    Article  CAS  PubMed  Google Scholar 

  41. F. Doria, S. N. Richter, M. Nadai, S. Colloredo-Mels, M. Mella, M. Palumbo and M. Freccero, BINOL-Amino Acid Conjugates as Triggerable Carriers of DNA-Targeted Potent Photocytotoxic Agents, J. Med. Chem., 2007, 50, 6570–6579.

    Article  CAS  PubMed  Google Scholar 

  42. D. Verga, S. N. Richter, M. Palumbo, R. Gandolfi and M. Freccero, Bipyridyl Ligands as Photoactivatable Mono- and Bis-Alkylating Agents Capable of DNA Cross-Linking, Org. Biomol. Chem., 2007, 5, 233–235.

    Article  CAS  PubMed  Google Scholar 

  43. D. Verga, M. Nadai, F. Doria, C. Percivalle, M. Di Antonio, M. Palumbo, S. N. Richter and M. Freccero, Photogeneration and Reactivity of Naphthoquinone Methides as Purine Selective DNA Alkylating Agents, J. Am. Chem. Soc., 2010, 132, 14625–14637.

    Article  CAS  PubMed  Google Scholar 

  44. N. Basaric, N. Cindro, D. Bobinac, K. Mlinaric-Majerski, L. Uzelac, M. Kralj and P. Wan, Sterically Congested Quinone Methides in Photodehydration Reactions of 4-Hydroxybiphenyl Derivatives and Investigation of their Antiproliferative Activity, Photochem. Photobiol. Sci., 2011, 10, 1910–1925.

    Article  CAS  PubMed  Google Scholar 

  45. N. Basaric, N. Cindro, D. Bobinac, L. Uzelac, K. Mlinaric-Majerski, M. Kralj and P. Wan, Zwitterionic Biphenyl Quinone Methides in Photodehydration Reactions of 3-Hydroxybiphenyl Derivatives: Laser Flash Photolysis and Antiproliferation Study, Photochem. Photobiol. Sci., 2012, 11, 381–396.

    Article  CAS  PubMed  Google Scholar 

  46. J. Veljkovic, L. Uzelac, K. Molcanov, K. Mlinaric-Majerski, M. Kralj, P. Wan and N. Basaric, Sterically Congested Adamantylnaphthalene Quinone Methides, J. Org. Chem., 2012, 77, 4596–4610.

    Article  CAS  PubMed  Google Scholar 

  47. S. Arumugam, J. Guo, N. E. Mbua, F. Fiscourt, N. Lin, E. Nekongo, G. J. Boons and V. V. Popik, Selective and Reversible Photochemical Derivatization of Cysteine Residues in Peptides and Proteins, Chem. Sci., 2014, 5, 1591–1598.

    Article  CAS  PubMed  Google Scholar 

  48. J. L. Mergny and L. Lacroix, Analysis of Thermal Melting Curves, Oligonucleotides, 2013, 13, 515–537.

    Article  CAS  Google Scholar 

  49. N. Perin, I. Martin Kleiner, R. Nhili, W. Laine, M.-H. David-Cordonnier, O. Vugrek, G. Karminski-Zamola, M. Kralj and M. Hranjec, Biological activity and DNA binding studies of 2-substituted benzimidazo[1,2-a]quinolines bearing different amino side chains, MedChemComm, 2013, 4, 1537–1550.

    Article  CAS  Google Scholar 

  50. M. Eriksson, B. Nordén, Linear and Circular Dichroism of Drug-Nucleic Acid Complexes, Methods Enzymol., 2001, 340, 68–98.

    Article  CAS  PubMed  Google Scholar 

  51. M. Nishijima, T. C. S. Pace, A. Nakamura, T. Mori, T. Wada, C. Bohne and Y. Inoue, Supramolecular Photochirogenesis with Biomolecules. Mechanistic Studies on the Enantiodifferentiation for the Photocyclodimerization of 2-Anthracenecarboxylate Mediated by Bovine Serum Albumin, J. Org. Chem., 2007, 72, 2707–2715.

    Article  CAS  PubMed  Google Scholar 

  52. V. Subramanian, P. Ducept, R. M. Williams and K. Luger, Effects of Photo-Chemically Activated Alkylating Agents of the FR900482 Family on Chromatin, Chem. Biol., 2007, 14, 553–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. S. Bail and D. W. Goodrich, Different DNA Lesions Trigger Distinct Cell Death Responses in HCT116 Colon Carcinoma Cells, Mol. Cancer Ther., 2004, 3, 613–620.

    Google Scholar 

  54. K. Sato, Y. Kitajima, N. Kohya, A. Miyoshi, Y. Koga and K. Miyazaki, Deficient MGMT and Proficient hMLH1 Expression Renders Gallbladder Carcinoma Cells Sensitive to Alkylating Agents Through G2-M Cell Cycle Arrest, Int. J. Oncol., 2005, 26, 1653–1661.

    CAS  PubMed  Google Scholar 

  55. A. Masta, P. J. Gray and D. R. Phillips, Nitrogen Mustard Inhibits Transcription and Translation in a Cell Free System, Nucleic Acids Res., 1995, 23, 3508–3515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Q. Zhou, Y. Qu, J. B. Mangrum and X. Wang, DNA Alkylation with N-Methylquinolinium Quinone Methide to N2-dG Adducts Resulting in Extensive Stops in Primer Extension with DNA Polymerases and Subsequent Suppression of GFP Expression in A549, Cells Chem. Res. Toxicol., 2011, 24, 402–411.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marijeta Kralj or Nikola Basarić.

Additional information

Electronic supplementary information (ESI) available: HPLC chromatograms, NMR, MS, UV-vis, fluorescence and CD spectra. See DOI: 10.1039/c5pp00099h

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kralj, M., Uzelac, L., Wang, YH. et al. Enhancement of antiproliferative activity by phototautomerization of anthrylphenols. Photochem Photobiol Sci 14, 1082–1092 (2015). https://doi.org/10.1039/c5pp00099h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00099h

Navigation