Skip to main content
Log in

Hair follicle melanocyte precursors are awoken by ultraviolet radiation via a cell extrinsic mechanism

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Melanocyte stem cells (MCSCs) in the upper portion of the hair follicle periodically supply melanocytes (MCs) that migrate downward into the hair bulb during anagen, the growth phase of the hair cycle. However MCs can also migrate upwards. We previously observed an increase in epidermal MC density in the mouse epidermis after a single ultraviolet radiation (UVR) exposure in neonatal, but not adult mice. To better understand MCSC activation by UVR we methodically studied the response of MCs to narrow band UVB (since UVA does not invoke this response) exposure in neonatal mice, and in adults at different stages of the hair cycle. We found that a single exposure of adult mice did not induce activation of MCSCs, in any stage of the hair cycle. When adult mice MCSCs were isolated in telogen, multiple UVB exposures resulted in their activation and production of daughter cells, which migrated upwards to the epidermis. Importantly, the MCSCs produced new progeny without themselves having incurred DNA damage after UVB exposure. This, together with examination of MC localisation in the skin of mice overexpressing stem cell factor in their keratinocytes, leads us to conclude that MCSC activation by UVB is driven via paracrine production of either SCF and/or other keratinocyte cytokines. We re-examined the increase in epidermal MC density in neonatal mouse skin. This effect was much more profound after only a single exposure than that of even multiple exposures to adult skin, and we show that in this setting also, the epidermal MCs mostly derive from activation of MC precursors in the upper hair follicle, and most likely via a cell extrinsic mechanism. Hence, although adaptive changes in the skin induced by repetitive UVB exposures are necessary in adult mice, in both the adult and neonatal context the division and migration upwards of follicular MCSCs is the major mode by which epidermal MC numbers increase after UVR exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Imokawa, Autocrine and paracrine regulation of melanocytes in human skin and in pigmentary disorders, Pigm. Cell Res., 2004, 17, 96–110.

    Article  CAS  Google Scholar 

  2. T. Hirobe, Role of keratinocyte-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes, Pigm. Cell Res., 2005, 18, 2–12.

    Article  CAS  Google Scholar 

  3. E. K. Nishimura, S. A. Jordan, H. Oshima, H. Yoshida, M. Osawa, M. Moriyama, I. J. Jackson, Y. Barrandon, Y. Miyachi and S. Nishikawa, Dominant role of the niche in melanocyte stem-cell fate determination, Nature, 2002, 416, 854–860.

    Article  CAS  PubMed  Google Scholar 

  4. K. Inomata, T. Aoto, N. T. Binh, N. Okamoto, S. Tanimura, T. Wakayama, S. Iseki, E. Hara, T. Masunaga, H. Shimizu and E. K. Nishimura, Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation, Cell, 2009, 137, 1088–1099.

    Article  CAS  PubMed  Google Scholar 

  5. R. Falabella and M. I. Barona, Update on skin repigmentation therapies in vitiligo, Pig. Cell Melanoma Res., 2009, 22, 42–65.

    Article  CAS  Google Scholar 

  6. J. P. Ortonne, D. M. MacDonald, A. Micoud and J. Thivolet, PUVA-induced repigmentation of vitiligo: a histochemical (split-DOPA) and ultrastructural study, Br. J. Dermatol., 1979, 101, 1–12.

    Article  CAS  PubMed  Google Scholar 

  7. J. Cui, L. Y. Shen and G. C. Wang, Role of hair follicles in the repigmentation of vitiligo, J. Invest. Dermatol., 1991, 97, 410–416.

    Article  CAS  PubMed  Google Scholar 

  8. A. Kyrgidis, T. G. Tzellos and S. Triaridis, Melanoma: Stem cells, sun exposure and hallmarks for 8. carcinogenesis, molecular concepts and future clinical implications, J. Carcinog., 2010, 9, 3, DOI: 10.4103/1477-3163.62141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. J. D. Hoerter, P. Bradley, A. Casillas, D. Chambers, B. Weiswasser, L. Clements, S. Gilbert and A. Jiao, Does melanoma begin in a melanocyte stem cell?, J. Skin Cancer, 2012, 2012, 571087.

  10. W. C. Chou, M. Takeo, P. Rabbani, H. Hu, W. Lee, Y. R. Chung, J. Carucci, P. Overbeek and M. Ito, Direct migration of follicular melanocyte stem cells to the epidermis after wounding or UVB irradiation is dependent on Mc1r signaling, Nat. Med., 2013, 19, 924–929.

    Article  CAS  PubMed  Google Scholar 

  11. A. Slominski, D. J. Tobin, S. Shibahara and J. Wortsman, Melanin pigmentation in mammalian skin and its hormonal regulation, Physiol. Rev., 2004, 84, 1155–1228.

    Article  CAS  PubMed  Google Scholar 

  12. R. Staricco, A. Miller-Milinska, Activation of amelanotic melanocytes in the outer root sheath of the hair follicle following ultraviolet rays exposure, J. Invest. Dermatol., 1962, 39, 163–164.

    Article  CAS  PubMed  Google Scholar 

  13. W. Quevedo and C. McTague, Genetic influences on the response of mouse melanocytes to ultraviolet light: the melanocyte system of hair-covered skin, J. Exp. Zool., 1963, 152, 159–168.

    Article  Google Scholar 

  14. I. Rosdahl and G. Szabo, Mitotic activity of epidermal melanocytes in UV-irradiated mouse skin, J. Invest. Dermatol., 1978, 70, 143–148.

    Article  CAS  PubMed  Google Scholar 

  15. U. Stierner, I. Rosdahl, A. Augustsson and B. Kagedal, UVB irradiation induces melanocyte increase in both exposed and shielded human skin, J. Invest. Dermatol., 1989, 92, 561–564.

    Article  CAS  PubMed  Google Scholar 

  16. Y. Yamaguchi, S. G. Coelho, B. Z. Zmudzka, K. Takahashi, J. Z. Beer, V. J. Hearing and S. A. Miller, Cyclobutane pyrimidine dimer formation and p53 production in human skin after repeated UV irradiation, Exp. Dermatol., 2008, 17, 916–924.

    Article  CAS  PubMed  Google Scholar 

  17. K. Iwata, N. Inui and T. Takeuchi, Induction of active melanocytes in mouse skin by carcinogens: a new method for detection of skin carcinogens, Carcinogenesis, 1981, 2, 589–593.

    Article  CAS  PubMed  Google Scholar 

  18. A. A. Sharov, G. Z. Li, T. N. Palkina, T. Y. Sharova, B. A. Gilchrest and V. A. Botchkarev, Fas and c-kit are involved in the control of hair follicle melanocyte apoptosis and migration in chemotherapy-induced hair loss, J. Invest. Dermatol., 2003, 120, 27–35.

    Article  CAS  PubMed  Google Scholar 

  19. T. Hirobe, Developmental changes in the proliferative response of mouse epidermal melanocytes to skin wounding, Development, 1988, 102, 567–574.

    Article  CAS  PubMed  Google Scholar 

  20. N. F. Box and T. Terzian, The role of p53 in pigmentation, tanning and melanoma, Pig. Cell Melanoma Res., 2008, 21, 525–533.

    Article  CAS  Google Scholar 

  21. T. Kunisada, S. Z. Lu, H. Yoshida, S. Nishikawa, S. Nishikawa, M. Mizoguchi, S. Hayashi, L. Tyrrell, D. A. Williams, X. Wang and B. J. Longley, Murine cutaneous mastocytosis and epidermal melanocytosis induced by keratinocyte expression of transgenic stem cell factor, J. Exp. Med., 1998, 187, 1565–1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. P. Rabbani, M. Takeo, W. Chou, P. Myung, M. Bosenberg, L. Chin, M. M. Taketo and M. Ito, Coordinated activation of Wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration, Cell, 2011, 145, 941–955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. T. López-Rovira, V. Silva-Vargas and F. M. Watt, Different consequences of beta1 integrin deletion in neonatal and adult mouse epidermis reveal a context-dependent role of integrins in regulating proliferation, differentiation, and intercellular communication, J. Invest. Dermatol., 2005, 125, 1215–1227.

    Article  PubMed  Google Scholar 

  24. M. R. Zaidi, S. Davis, F. P. Noonan, C. Graff-Cherry, T. S. Hawley, R. L. Walker, L. Feigenbaum, E. Fuchs, L. Lyakh, H. A. Young, T. J. Hornyak, H. Arnheiter, G. Trinchieri, P. S. Meltzer, E. C. De Fabo and G. Merlino, Interferon-? links ultraviolet radiation to melanomagenesis in mice, Nature, 2011, 469, 548–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. H. Y. Handoko, M. P. Rodero, G. M. Boyle, B. Ferguson, C. Engwerda, G. Hill, H. K. Muller, K. Khosrotehrani and G. J. Walker, UVB-induced melanocyte proliferation in neonatal mice driven by CCR2-independent recruitment of Ly6c(low)MHCII(hi) macrophages, J. Invest. Dermatol., 2013, 133, 1803–1812.

    Article  CAS  PubMed  Google Scholar 

  26. T. Yamada, S. Hasegawa, Y. Inoue, Y. Date, N. Yamamoto, H. Mizutani, S. Nakata, K. Matsunaga and H. Akamatsu, Wnt/ß-Catenin and Kit Signaling Sequentially Regulate Melanocyte Stem Cell Differentiation in UVB-Induced Epidermal Pigmentation, J. Invest. Dermatol., 2013, 133, 2753–2762.

    Article  CAS  PubMed  Google Scholar 

  27. G. J. Walker, M. G. Kimlin, E. Hacker, S. Ravishankar, H. K. Muller, F. Beermann and N. K. Hayward, Murine neonatal melanocytes exhibit a heightened proliferative response to ultraviolet radiation and migrate to the epidermal basal layer, J. Invest. Dermatol., 2009, 129, 184–193.

    Article  CAS  PubMed  Google Scholar 

  28. A. Slominski and R. Paus, Melanogenesis is coupled to murine anagen: toward new concepts for the role of melanocytes and the regulation of melanogenesis in hair growth, J. Invest. Dermatol., 1993, 101, (1 Suppl) 90S–97S.

    Google Scholar 

  29. A. Slominski, J. Wortsman, P. M. Plonka, K. U. Schallreuter, R. Paus and D. J. Tobin, Hair follicle pigmentation, J. Invest. Dermatol., 2005, 124, 13–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. M. A. Mackenzie, S. A. Jordan, P. S. Budd and I. J. Jackson, Activation of the receptor tyrosine kinase Kit is required for the proliferation of melanoblasts in the mouse embryo, Dev. Biol., 1997, 192, 99–107.

    Article  CAS  PubMed  Google Scholar 

  31. R. Paus, K. S. Stenn and R. E. Link, Telogen skin contains an inhibitor of hair growth, Br. J. Dermatol., 1990, 122, 777–784.

    Article  CAS  PubMed  Google Scholar 

  32. M. Okura, H. Maeda, S. Nishikawa and M. Mizoguchi, Effects of monoclonal anti-c-kit antibody (ACK2) on melanocytes in newborn mice, J. Invest. Dermatol., 1995, 105, 322–328.

    Article  CAS  PubMed  Google Scholar 

  33. K. A. McGowan, J. Z. Li, C. Y. Park, V. Beaudry, H. K. Tabor, A. J. Sabnis, W. Zhang, H. Fuchs, M. H. de Angelis, R. M. Myers, L. D. Attardi and G. S. Barsh, Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects, Nat. Genet., 2008, 40, 963–970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. J. Zeron-Medina, X. Wang, E. Repapi, M. R. Campbell, D. Su, F. Castro-Giner, B. Davies, E. F. Peterse, N. Sacilotto, G. J. Walker, T. Terzian, I. P. Tomlinson, N. F. Box, N. Meinshausen, S. De Val, D. A. Bell and G. L. Bond, A polymorphic p53 response element in KIT ligand influences cancer risk and has undergone natural selection, Cell, 2013, 155, 410–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. M. Osawa, G. Egawa, S. S. Mak, M. Moriyama, R. Freter, S. Yonetani, F. Beermann and S. Nishikawa, Molecular characterization of melanocyte stem cells in their niche, Development, 2005, 132, 5589–5599.

    Article  CAS  PubMed  Google Scholar 

  36. D. L. Mitchell, L. Paniker and T. Douki, DNA damage, repair and photoadaptation in a Xiphophorus fish hybrid, Photochem. Photobiol., 2009, 85, 1384–1390.

    Article  CAS  PubMed  Google Scholar 

  37. W. Qiu, K. Yang, M. Lei, H. Yan, H. Tang, X. Bai, G. Yang, X. Lian and J. Wu, SCF/c-kit signaling is required in 12-O-tetradecanoylphorbol-13-acetate-induced migration and differentiation of hair follicle melanocytes for epidermal pigmentation, Cell Tissue Res., 2015, 360, (2) 333–346.

    Article  CAS  PubMed  Google Scholar 

  38. G. E. Costin and V. J. Hearing, Human skin pigmentation: melanocytes modulate skin color in response to stress, FASEB J., 2007, 21, 976–994.

    Article  CAS  PubMed  Google Scholar 

  39. H. Aoki, A. Hara, T. Motohashi and T. Kunisada, Keratinocyte Stem Cells but Not Melanocyte Stem Cells Are the Primary Target for Radiation-Induced Hair Graying, J. Invest. Dermatol., 2013, 133, (9) 2143–2151.

    Article  CAS  PubMed  Google Scholar 

  40. M. Fukunaga-Kalabis, D. M. Hristova, J. X. Wang, L. Li, M. V. Heppt, Z. Wei, A. Gyurdieva, M. R. Webster, M. Oka, A. T. Weeraratna and M. Herlyn, UV-induced Wnt7a in the Human Skin Microenvironment Specifies the Fate of Neural Crest-Like Cells Via Suppression of Notch, J. Invest. Dermatol., 2015 DOI: 10.1038/jid.2015.59. [Epub ahead of print].

    Google Scholar 

  41. A. Slominski, J. Wortsman, T. Luger, R. Paus and S. Solomon, Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress, Physiol. Rev., 2000, 80, 979–1020.

    Article  CAS  PubMed  Google Scholar 

  42. A. T. Slominski, M. A. Zmijewski, B. Zbytek, D. J. Tobin, T. C. Theoharides and J. Rivier, Key role of CRF in the skin stress response system, Endocr. Rev., 2013, 34, 827–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. A. van Schanke, M. J. Jongsma, R. Bisschop, G. M. van Venrooij, H. Rebel, F. R. de Gruijl, Single UVB overexposure stimulates melanocyte proliferation in murine skin, in contrast to fractionated or UVA-1 exposure, J. Invest. Dermatol., 2005, 124, 241–247.

    Article  PubMed  Google Scholar 

  44. F. P. Noonan, J. A. Recio, H. Takayama, P. Duray, M. R. Anver, W. L. Rush, E. C. De Fabo and G. Merlino, Neonatal sunburn and melanoma in mice, Nature, 2001, 413, 271–272.

    Article  CAS  PubMed  Google Scholar 

  45. E. Hacker, N. Irwin, H. K. Muller, M. B. Powell, G. Kay, N. Hayward and G. Walker, Neonatal ultraviolet radiation exposure is critical for malignant melanoma induction in pigmented Tpras transgenic mice, J. Invest. Dermatol., 2005, 125, 1074–1077.

    Article  CAS  PubMed  Google Scholar 

  46. A. Viros, B. Sanchez-Laorden, M. Pedersen, S. J. Furney, J. Rae, K. Hogan, S. Ejiama, M. R. Girotti, M. Cook, N. Dhomen and R. Marais, Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53, Nature, 2014, 511, 478–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. E. Chai, B. Ferguson, T. Prow, P. Soyer and G. Walker, Three-dimensional modelling for estimation of nevus count and probability of nevus-melanoma progression in a murine model, Pig. Cell Melanoma Res., 2014, 27, 317–319.

    Article  Google Scholar 

  48. G. J. Walker, H. P. Soyer, T. Terzian and N. F. Box, Modelling melanoma in mice, Pig. Cell Melanoma Res., 2011, 24, 1158–1176.

    Article  CAS  Google Scholar 

  49. T. Horikawa, Y. Mishima, K. Nishino and M. Ichihashi, Horizontal and vertical pigment spread into surrounding piebald epidermis and hair follicles after suction blister epidermal grafting, Pigm. Cell Res., 1999, 12, 175–180.

    Article  CAS  Google Scholar 

  50. J. Berkelhammer, R. W. Oxenhandler, R. R. Hook Jr. and J. M. Hennessy, Development of a new melanoma model in C57BL/6 mice, Cancer Res., 1982, 42, 3157–3163.

    CAS  PubMed  Google Scholar 

  51. M. P. Rodero, H. Y. Handoko, R. M. Villani, G. J. Walker and K. Khosrotehrani, Differential effects of ultraviolet irradiation in neonatal versus adult mice are not explained by defective macrophage or neutrophil infiltration, J. Invest. Dermatol., 2014, 134, 1991–1997.

    Article  CAS  PubMed  Google Scholar 

  52. A. Slominski and J. Wortsman, Neuroendocrinology of the skin, Endocr. Rev., 2000, 21, 457–487.

    CAS  PubMed  Google Scholar 

  53. A. T. Slominski, M. A. Zmijewski, C. Skobowiat, B. Zbytek, R. M. Slominski and J. D. Steketee, Sensing the environment: regulation of local and global homeostasis by the skin’s neuroendocrine system, Adv. Anat. Embryol. Cell Biol., 2012, 212, 1–115.

    Article  Google Scholar 

  54. J. M. Grichnik, J. A. Burch, J. Burchette and C. R. Shea, The SCF/KIT pathway plays a critical role in the control of normal human melanocyte homeostasis, J. Invest. Dermatol., 1998, 111, 233–238.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme J. Walker.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c5pp00098j

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferguson, B., Kunisada, T., Aoki, H. et al. Hair follicle melanocyte precursors are awoken by ultraviolet radiation via a cell extrinsic mechanism. Photochem Photobiol Sci 14, 1179–1189 (2015). https://doi.org/10.1039/c5pp00098j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00098j

Navigation