Skip to main content
Log in

The low photo-inactivation rate of bacteria in human plasma II. Inhibition of methylene blue bleaching in plasma and effective bacterial destruction by the addition of dilute acetic acid to human plasma

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Methylene blue (MB) and other photo-sensitizer molecules have been recognized as effective means for the inactivation of bacteria and other pathogens owing to their ability to photo-generate reactive oxygen species (ROS) including singlet oxygen. These reactive species react with the membrane of the bacteria causing their destruction. However, the efficiency of MB to destroy bacteria in plasma is very low because the MB 660 nm absorption band, that is responsible for the ROS generation, is bleached. The bleaching of MB, in plasma, is caused by the attachment of a hydrogen atom to the central ring nitrogen of MB, which destroys the ring conjugation and forms Leuco-MB which does not absorb in the 600 nm region. In this paper we show that addition of dilute acetic acid, ∼10−4 M, to human plasma, prevents H-atom attachment to MB, allowing MB to absorb at 660 nm, generates singlet oxygen and thus inactivates bacteria. The mechanism proposed, for preventing MB bleaching in plasma, is based on the oxidation of cysteine to cystine, by reaction with added dilute acetic acid, thus eliminating the availability of the thiol hydrogen atom which attaches to the MB nitrogen. It is expected that the addition of acetic acid to plasma will be effective in the sterilization of plasma and killing of bacteria in wounds and burns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Williams and D. L. Heymann, Containment of antibiotic resistance, Science, 1998, 279, 1153–1154.

    Article  CAS  Google Scholar 

  2. T. T. Yoshikawa, Antimicrobial resistance and aging: Beginning of the end of the antibiotic era?, J. Am. Geriatr. Soc., 2002, 50, S226–S229.

    Article  Google Scholar 

  3. R. E. W. Hancock, The end of an era?, Nat. Rev. Drug Discovery, 2007, 6, 28-28.

    Article  CAS  Google Scholar 

  4. P. Nordmann, L. Poirel, M. A. Toleman and T. R. Walsh, Does broad-spectrum beta-lactam resistance due to NDM-1 herald the end of the antibiotic era for treatment of infections caused by Gram-negative bacteria?, J. Antimicrob. Chemother., 2011, 66, 689–692.

    Article  CAS  Google Scholar 

  5. M. R. Hamblin and T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease?, Photochem. Photobiol. Sci., 2004, 3, 436–450.

    Article  CAS  Google Scholar 

  6. M. Wainwright, Photodynamic antimicrobial chemotherapy (PACT), J. Antimicrob. Chemother., 1998, 42, 13–28.

    Article  CAS  Google Scholar 

  7. B. Zeina, J. Greenman, W. M. Purcell and B. Das, Killing of cutaneous microbial species by photodynamic therapy, Br. J. Dermatol., 2001, 144, 274–278.

    Article  CAS  Google Scholar 

  8. T. Dai, Y.-Y. Huang and M. R. Hamblin, Photodynamic therapy for localized infections—State of the art, Photodiagn. Photodyn. Ther., 2009, 6, 170–188.

    Article  CAS  Google Scholar 

  9. J. Chen, T. C. Cesario and P. M. Rentzepis, Time resolved spectroscopic studies of methylene blue and phenothiazine derivatives used for bacteria inactivation, Chem. Phys. Lett., 2010, 498, 81–85.

    Article  CAS  Google Scholar 

  10. F. Ronzani, A. Trivella, E. Arzoumanian, S. Blanc, M. Sarakha, C. Richard, E. Oliveros and S. Lacombe, Comparison of the photophysical properties of three phenothiazine derivatives: transient detection and singlet oxygen production, Photochem. Photobiol. Sci., 2013, 12, 2160–2169.

    Article  CAS  Google Scholar 

  11. A. P. Castano, T. N. Demidova and M. R. Hamblin, Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization, Photodiagn. Photodyn. Ther., 2004, 1, 279–293.

    Article  CAS  Google Scholar 

  12. J. Moan and K. Berg, The photodegradatio of porphyrins in cells can be used to estimate the lifetime of singlet oxygen, Photochem. Photobiol., 1991, 53, 549–553.

    Article  CAS  Google Scholar 

  13. W. A. Pryor, Oxy-radicals and related species: their formation, lifetimes, and reactions, Annu. Rev. Physiol., 1986, 48, 657–667.

    Article  CAS  Google Scholar 

  14. J. Chen, T. C. Cesario and P. M. Rentzepis, Effect of pH on methylene blue transient states and kinetics and bacteria photoinactivation, J. Phys. Chem. A, 2011, 115, 2702–2707.

    Article  CAS  Google Scholar 

  15. P. Hellstern and B. G. Solheim, The Use of Solvent/Detergent Treatment in Pathogen Reduction of Plasma, Transfus. Med. Hemother., 2011, 38, 65–70.

    Article  Google Scholar 

  16. J. P. R. Pelletier, S. Transue and E. L. Snyder, Pathogen inactivation techniques, Best Pract. Res., Clin. Haematol., 2006, 19, 205–242.

    Article  CAS  Google Scholar 

  17. M. Wainwright, H. Mohr and W. H. Walker, Phenothiazinium derivatives for pathogen inactivation in blood products, J. Photochem. Photobiol., B, 2007, 86, 45–58.

    Article  CAS  Google Scholar 

  18. A. O. Er, J. Chen, T. C. Cesario and P. M. Rentzepis, Inactivation of bacteria in plasma, Photochem. Photobiol. Sci., 2012, 11, 1700–1704.

    Article  Google Scholar 

  19. S.-K. Lee and A. Mills, Novel photochemistry of leuco-methylene blue, Chem. Commun., 2003, 2366–2367.

    Google Scholar 

  20. S. J. Wagner, L. I. Friedman, R. Y. Dodd, Transfusion-associated bacterial sepsis, Clin. Microbiol. Rev., 1994, 7, 290–302.

    Article  CAS  Google Scholar 

  21. M. T. G. Holden, E. J. Feil, J. A. Lindsay, S. J. Peacock, N. P. J. Day, M. C. Enright, T. J. Foster, C. E. Moore, L. Hurst, R. Atkin, A. Barron, N. Bason, S. D. Bentley, C. Chillingworth, T. Chillingworth, C. Churcher, L. Clark, C. Corton, A. Cronin, J. Doggett, L. Dowd, T. Feltwell, Z. Hance, B. Harris, H. Hauser, S. Holroyd, K. Jagels, K. D. James, N. Lennard, A. Line, R. Mayes, S. Moule, K. Mungall, D. Ormond, M. A. Quail, E. Rabbinowitsch, K. Rutherford, M. Sanders, S. Sharp, M. Simmonds, K. Stevens, S. Whitehead, B. G. Barrell, B. G. Spratt and J. Parkhill, Complete genomes of two clinical Staphylococcus aureus strains: Evidence for the rapid evolution of virulence and drug resistance, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 9786–9791.

    Article  CAS  Google Scholar 

  22. K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman and P. Daszak, Global trends in emerging infectious diseases, Nature, 2008, 451, 990–993.

    Article  CAS  Google Scholar 

  23. B. A. Lindig, M. A. J. Rodgers and A. P. Schaap, Determination of the lifetime of singlet oxygen in water-d2 using 9,10-anthracenedipropionic acid, a water-soluble probe, J. Am. Chem. Soc., 1980, 102, 5590–5593.

    Article  CAS  Google Scholar 

  24. J. Chen, T. C. Cesario and P. M. Rentzepis, Rationale and mechanism for the low photoinactivation rate of bacteria in plasma, Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 33–38.

    Article  CAS  Google Scholar 

  25. P. W. Preisler, Kinetics of the reduction of cystine and related dithio (R-S-S-R) acids by reversible oxidation-reduction systems, J. Biol. Chem., 1930, 87, 767–784.

    Article  CAS  Google Scholar 

  26. Y.-M. Go and D. P. Jones, Cysteine/cystine redox signaling in cardiovascular disease, Free Radicals Biol. Med., 2011, 50, 495–509.

    Article  CAS  Google Scholar 

  27. M. P. Brigham, W. H. Stein and S. Moore, The concentration of cysteine and cystine in human blood plasma, J. Clin. Invest., 1960, 39, 1633–1638.

    Article  CAS  Google Scholar 

  28. A. Pastore, R. Massoud, C. Motti, A. L. Russo, G. Fucci, C. Cortese and G. Federici, Fully automated assay for total homocysteine, cysteine, cysteinylglycine, glutathione, cysteamine, and 2-mercaptopropionylglycine in plasma and urine, Clin. Chem., 1998, 44, 825–832.

    Article  CAS  Google Scholar 

  29. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic Therapy, J. Natl. Cancer Inst., 1998, 90, 889–905.

    Article  CAS  Google Scholar 

  30. T. Dai, G. P. Tegos, Z. Lu, L. Huang, T. Zhiyentayev, M. J. Franklin, D. G. Baer and M. R. Hamblin, Photodynamic therapy for Acinetobacter baumannii burn infections in mice, Antimicrob. Agents Chemother., 2009, 53, 3929–3934.

    Article  CAS  Google Scholar 

  31. M. R. Hamblin, D. A. O’Donnell, N. Murthy, C. H. Contag and T. Hasan, Rapid control of wound infections by targeted photodynamic Therapy Monitored by In Vivo Bioluminescence Imaging, Photochem. Photobiol., 2002, 75, 51–57.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Rentzepis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Cesario, T.C., Li, R. et al. The low photo-inactivation rate of bacteria in human plasma II. Inhibition of methylene blue bleaching in plasma and effective bacterial destruction by the addition of dilute acetic acid to human plasma. Photochem Photobiol Sci 14, 1880–1887 (2015). https://doi.org/10.1039/c5pp00042d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00042d

Navigation