Skip to main content

Advertisement

Log in

Photochemical internalisation, a minimally invasive strategy for light-controlled endosomal escape of cancer stem cell-targeting therapeutics

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Despite progress in radio-, chemo- and photodynamic-therapy (PDT) of cancer, treatment resistance still remains a major problem for patients with aggressive tumours. Cancer stem cells (CSCs) or tumour-initiating cells are intrinsically and notoriously resistant to conventional cancer therapies and are proposed to be responsible for the recurrence of tumours after therapy. According to the CSC hypothesis, it is imperative to develop novel anticancer agents or therapeutic strategies that take into account the biology and role of CSCs. The present review outlines our recent study on photochemical internalisation (PCI) using the clinically relevant photosensitiser TPCS2a/Amphinex® as a rational, non-invasive strategy for the light-controlled endosomal escape of CSC-targeting drugs. PCI is an intracellular drug delivery method based on light-induced ROS-generation and a subsequent membrane-disruption of endocytic vesicles, leading to cytosolic release of the entrapped drugs of interest. In different proof-of-concept studies we have demonstrated that PCI of CSC-directed immunotoxins targeting CD133, CD44, CSPG4 and EpCAM is a highly specific and effective strategy for killing cancer cells and CSCs. CSCs overexpressing CD133 are PDT-resistant; however, this is circumvented by PCI of CD133-targeting immunotoxins. In view of the fact that TPCS2a is not a substrate of the efflux pumps ABCG2 and P-glycoprotein (ABCB1), the PCI-method is a promising anti-CSC therapeutic strategy. Due to a laser-controlled exposure, PCI of CSC-targeting drugs will be confined exclusively to the tumour tissue, suggesting that this drug delivery method has the potential to spare distant normal stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Reya, S. J. Morrison, M. F. Clarke, I. L. Weissman, Stem cells, cancer, and cancer stem cells, Nature, 2001, 414, 105–111.

    Article  CAS  PubMed  Google Scholar 

  2. M. F. Clarke, J. E. Dick, P. B. Dirks, C. J. Eaves, C. H. Jamieson, D. L. Jones, et al., Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells, Cancer Res., 2006, 66, 9339–9344.

    Article  CAS  PubMed  Google Scholar 

  3. J. E. Visvader, G. J. Lindeman, Cancer stem cells: current status and evolving complexities, Cell Stem Cell, 2012, 10, 717–728.

    Article  CAS  PubMed  Google Scholar 

  4. C. A. O’Brien, A. Pollett, S. Gallinger, J. E. Dick, A human colon cancer cell capable of initiating tumour growth in immunodeficient mice, Nature, 2007, 445, 106–110.

    Article  PubMed  CAS  Google Scholar 

  5. L. Ricci-Vitiani, D. G. Lombardi, E. Pilozzi, M. Biffoni, M. Todaro, C. Peschle, et al., Identification and expansion of human colon-cancer-initiating cells, Nature, 2007, 445, 111–115.

    Article  CAS  PubMed  Google Scholar 

  6. M. Todaro, M. P. Alea, A. B. Di Stefano, P. Cammareri, L. Vermeulen, F. Iovino, et al., Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4, Cell Stem Cell, 2007, 1, 389–402.

    Article  CAS  PubMed  Google Scholar 

  7. L. Vermeulen, M. Todaro, M. F. de Sousa, M. R. Sprick, K. Kemper, A. M. Perez, et al., Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 13427–13432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. I. Malanchi, H. Peinado, D. Kassen, T. Hussenet, D. Metzger, P. Chambon, et al., Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling, Nature, 2008, 452, 650–653.

    Article  CAS  PubMed  Google Scholar 

  9. A. Murat, E. Migliavacca, T. Gorlia, W. L. Lambiv, T. Shay, M. F. Hamou, et al., Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma, J. Clin. Oncol., 2008, 26, 3015–3024.

    Article  CAS  PubMed  Google Scholar 

  10. J. E. Visvader, G. J. Lindeman, Cancer stem cells in solid tumours: accumulating evidence and unresolved questions, Nat. Rev. Cancer, 2008, 8, 755–768.

    Article  CAS  PubMed  Google Scholar 

  11. B. B. Zhou, H. Zhang, M. Damelin, K. G. Geles, J. C. Grindley, P. B. Dirks, Tumour-initiating cells: challenges and opportunities for anticancer drug discovery, Nat. Rev. Drug Discovery, 2009, 8, 806–823.

    Article  CAS  PubMed  Google Scholar 

  12. N. Y. Frank, T. Schatton, M. H. Frank, The therapeutic promise of the cancer stem cell concept, J. Clin. Invest., 2010, 120, 41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. G. Driessens, B. Beck, A. Caauwe, B. D. Simons, C. Blanpain, Defining the mode of tumour growth by clonal analysis, Nature, 2012, 488, 527–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. A. G. Schepers, H. J. Snippert, D. E. Stange, B. M. van den, J. H. van Es, W. M. van de, et al., Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas, Science, 2012, 337, 730–735.

    Article  CAS  PubMed  Google Scholar 

  15. J. Chen, Y. Li, T. S. Yu, R. M. McKay, D. K. Burns, S. G. Kernie, et al., A restricted cell population propagates glioblastoma growth after chemotherapy, Nature, 2012, 488, 522–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. J. M. Rosen, C. T. Jordan, The increasing complexity of the cancer stem cell paradigm, Science, 2009, 324, 1670–1673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. D. Hanahan, R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, 2011, 144, 646–674.

    Article  CAS  PubMed  Google Scholar 

  18. M. Diehn, R. W. Cho, M. F. Clarke, Therapeutic implications of the cancer stem cell hypothesis, Semin. Radiat. Oncol., 2009, 19, 78–86.

    Article  PubMed  PubMed Central  Google Scholar 

  19. C. L. Chaffer, I. Brueckmann, C. Scheel, A. J. Kaestli, P. A. Wiggins, L. O. Rodrigues, et al., Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 7950–7955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. S. G. Piccirillo, R. Combi, L. Cajola, A. Patrizi, S. Redaelli, A. Bentivegna, et al., Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution, Oncogene, 2009, 28, 1807–1811.

    Article  CAS  PubMed  Google Scholar 

  21. P. K. Selbo, M. G. Rosenblum, L. H. Cheung, W. Zhang, K. Berg, Multi-modality therapeutics with potent anti-tumor effects: photochemical internalization enhances delivery of the fusion toxin scFvMEL/rGel, PLoS One, 2009, 4, e6691. 10.1371/journal.pone.0006691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. P. K. Selbo, G. Sivam, O. Fodstad, K. Sandvig, K. Berg, In Vivo Documentation of Photochemical Internalization, a Novel Approach to Site Specific Cancer Therapy, Int. J. Cancer, 2001, 92, 761–766.

    Article  CAS  PubMed  Google Scholar 

  23. P. K. Selbo, A. Weyergang, A. Bonsted, S. G. Bown, K. Berg, Photochemical internalization of therapeutic macromolecular agents: a novel strategy to kill multidrug resistant cancer cells, J. Pharmacol. Exp. Ther., 2006, 319, 604–612.

    Article  CAS  PubMed  Google Scholar 

  24. P. K. Selbo, A. Weyergang, M. S. Eng, M. Bostad, G. M. Mælandsmo, A. Høgset, et al., Strongly amphiphilic photosensitizers are not substrates of the cancer stem cell marker ABCG2 and provides specific and efficient light-triggered drug delivery of an EGFR-targeted cytotoxic drug, J. Controlled Release, 2012, 159, 197–203.

    Article  CAS  Google Scholar 

  25. C. E. Olsen, K. Berg, P. K. Selbo, A. Weyergang, Circumvention of resistance to photodynamic therapy in doxorubicin-resistant sarcoma by photochemical internalization of gelonin, Free Radical Biol. Med., 2013, 65, 1300–1309.

    Article  CAS  Google Scholar 

  26. P. K. Selbo, G. Sivam, O. Fodstad, K. Sandvig, K. Berg, Photochemical internalization increases the cytotoxic effect of the immunotoxin MOC31-gelonin, Int. J. Cancer, 2000, 87, 853–859.

    Article  CAS  PubMed  Google Scholar 

  27. P. K. Selbo, O. Kaalhus, G. Sivam, K. Berg, 5-Aminolevulinic Acid–based Photochemical Internalization of the Immunotoxin MOC31-gelonin Generates Synergistic Cytotoxic Effects In Vitro, Photochem. Photobiol., 2001, 74, 303–310.

    Article  CAS  PubMed  Google Scholar 

  28. K. Lund, M. Bostad, E. Skarpen, M. Braunagel, S. Kiprijanov, S. Krauss, et al., The novel EpCAM-targeting monoclonal antibody 3-17I linked to saporin is highly cytotoxic after photochemical internalization in breast, pancreas and colon cancer cell lines, MAbs, 2014, 6, 1038–1050.

    Article  PubMed  PubMed Central  Google Scholar 

  29. M. Dean, T. Fojo, S. Bates, Tumour stem cells and drug resistance, Nat. Rev. Cancer, 2005, 5, 275–284.

    Article  CAS  PubMed  Google Scholar 

  30. M. Baumann, M. Krause, R. Hill, Exploring the role of cancer stem cells in radioresistance, Nat. Rev. Cancer, 2008, 8, 545–554.

    Article  CAS  PubMed  Google Scholar 

  31. M. Maugeri-Sacca, P. Vigneri, M. R. De, Cancer stem cells and chemosensitivity, Clin. Cancer Res., 2011, 17, 4942–4947.

    Article  CAS  PubMed  Google Scholar 

  32. S. Colak, J. P. Medema, Cancer stem cells–important players in tumor therapy resistance, FEBS J., 2014, 281, 4779–4791.

    Article  CAS  PubMed  Google Scholar 

  33. T. Suda, K. Takubo, G. L. Semenza, Metabolic regulation of hematopoietic stem cells in the hypoxic niche, Cell Stem Cell, 2011, 9, 298–310.

    Article  CAS  PubMed  Google Scholar 

  34. E. R. Blazek, J. L. Foutch, G. Maki, Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia, Int. J. Radiat. Oncol., Biol., Phys., 2007, 67, 1–5.

    Article  CAS  Google Scholar 

  35. Z. Li, S. Bao, Q. Wu, H. Wang, C. Eyler, S. Sathornsumetee, et al., Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells, Cancer Cell, 2009, 15, 501–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. T. M. Yeung, S. C. Gandhi, W. F. Bodmer, Hypoxia and lineage specification of cell line-derived colorectal cancer stem cells, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 4382–4387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. B. Keith, M. C. Simon, Hypoxia-inducible factors, stem cells, and cancer, Cell, 2007, 129, 465–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. C. Calabrese, H. Poppleton, M. Kocak, T. L. Hogg, C. Fuller, B. Hamner, et al., A perivascular niche for brain tumor stem cells, Cancer Cell, 2007, 11, 69–82.

    Article  CAS  PubMed  Google Scholar 

  39. R. J. Gilbertson, J. N. Rich, Making a tumour’s bed: glioblastoma stem cells and the vascular niche, Nat. Rev. Cancer, 2007, 7, 733–736.

    Article  CAS  PubMed  Google Scholar 

  40. C. L. Bigarella, R. Liang, S. Ghaffari, Stem cells and the impact of ROS signaling, Development, 2014, 141, 4206–4218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. K. M. Holmstrom, T. Finkel, Cellular mechanisms and physiological consequences of redox-dependent signalling, Nat. Rev. Mol. Cell Biol., 2014, 15, 411–421.

    Article  CAS  PubMed  Google Scholar 

  42. K. Ito, A. Hirao, F. Arai, S. Matsuoka, K. Takubo, I. Hamaguchi, et al., Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells, Nature, 2004, 431, 997–1002.

    Article  CAS  PubMed  Google Scholar 

  43. Z. Tothova, R. Kollipara, B. J. Huntly, B. H. Lee, D. H. Castrillon, D. E. Cullen, et al., FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress, Cell, 2007, 128, 325–339.

    Article  CAS  PubMed  Google Scholar 

  44. K. Miyamoto, K. Y. Araki, K. Naka, F. Arai, K. Takubo, S. Yamazaki, et al., Foxo3a is essential for maintenance of the hematopoietic stem cell pool, Cell Stem Cell, 2007, 1, 101–112.

    Article  CAS  PubMed  Google Scholar 

  45. T. M. Phillips, W. H. McBride, F. Pajonk, The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation, J. Natl. Cancer Inst., 2006, 98, 1777–1785.

    Article  PubMed  Google Scholar 

  46. S. Bao, Q. Wu, R. E. McLendon, Y. Hao, Q. Shi, A. B. Hjelmeland, et al., Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature, 2006, 444, 756–760.

    Article  CAS  PubMed  Google Scholar 

  47. C. I. Kobayashi, T. Suda, Regulation of reactive oxygen species in stem cells and cancer stem cells, J. Cell. Physiol., 2012, 227, 421–430.

    Article  CAS  PubMed  Google Scholar 

  48. V. Catalano, A. Turdo, F. S. Di, F. Dieli, M. Todaro, G. Stassi, Tumor and its microenvironment: a synergistic interplay, Semin. Cancer Biol., 2013, 23, 522–532.

    Article  CAS  PubMed  Google Scholar 

  49. M. Diehn, R. W. Cho, N. A. Lobo, T. Kalisky, M. J. Dorie, A. N. Kulp, et al., Association of reactive oxygen species levels and radioresistance in cancer stem cells, Nature, 2009, 458, 780–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. T. Ishimoto, O. Nagano, T. Yae, M. Tamada, T. Motohara, H. Oshima, et al., CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth, Cancer Cell, 2011, 19, 387–400.

    Article  CAS  PubMed  Google Scholar 

  51. A. C. Miller, B. W. Henderson, The influence of cellular glutathione content on cell survival following photodynamic treatment in vitro, Radiat. Res., 1986, 107, 83–94.

    Article  CAS  PubMed  Google Scholar 

  52. R. Bachor, M. Scholz, C. R. Shea, T. Hasan, Mechanism of photosensitization by microsphere-bound chlorin e6 in human bladder carcinoma cells, Cancer Res., 1991, 51, 4410–4414.

    CAS  PubMed  Google Scholar 

  53. T. Kiesslich, K. Plaetzer, C. B. Oberdanner, J. Berlanda, F. J. Obermair, B. Krammer, Differential effects of glucose deprivation on the cellular sensitivity towards photodynamic treatment-based production of reactive oxygen species and apoptosis-induction, FEBS Lett., 2005, 579, 185–190.

    Article  CAS  PubMed  Google Scholar 

  54. K. Moitra, H. Lou, M. Dean, Multidrug efflux pumps and cancer stem cells: insights into multidrug resistance and therapeutic development, Clin. Pharmacol. Ther., 2011, 89, 491–502.

    Article  CAS  PubMed  Google Scholar 

  55. R. W. Robey, K. K. To, O. Polgar, M. Dohse, P. Fetsch, M. Dean, et al., ABCG2: a perspective, Adv. Drug Delivery Rev., 2009, 61, 3–13.

    Article  CAS  Google Scholar 

  56. J. W. Jonker, G. Merino, S. Musters, A. E. van Herwaarden, E. Bolscher, E. Wagenaar, et al., The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk, Nat. Med., 2005, 11, 127–129.

    Article  CAS  PubMed  Google Scholar 

  57. P. Krishnamurthy, J. D. Schuetz, Role of ABCG2/BCRP in biology and medicine, Annu. Rev. Pharmacol. Toxicol., 2006, 46, 381–410.

    Article  CAS  PubMed  Google Scholar 

  58. P. Krishnamurthy, D. D. Ross, T. Nakanishi, K. Bailey-Dell, S. Zhou, K. E. Mercer, et al., The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme, J. Biol. Chem., 2004, 279, 24218–24225.

    Article  CAS  PubMed  Google Scholar 

  59. S. Zhou, J. D. Schuetz, K. D. Bunting, A. M. Colapietro, J. Sampath, J. J. Morris, et al., The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype, Nat. Med., 2001, 7, 1028–1034.

    Article  CAS  PubMed  Google Scholar 

  60. A. Golebiewska, N. H. Brons, R. Bjerkvig, S. P. Niclou, Critical appraisal of the side population assay in stem cell and cancer stem cell research, Cell Stem Cell, 2011, 8, 136–147.

    Article  CAS  PubMed  Google Scholar 

  61. C. Hirschmann-Jax, A. E. Foster, G. G. Wulf, J. G. Nuchtern, T. W. Jax, U. Gobel, et al., A distinct “side population” of cells with high drug efflux capacity in human tumor cells, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 14228–14233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. P. P. Szotek, R. Pieretti-Vanmarcke, P. T. Masiakos, D. M. Dinulescu, D. Connolly, R. Foster, et al., Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 11154–11159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. L. Patrawala, T. Calhoun, R. Schneider-Broussard, J. Zhou, K. Claypool, D. G. Tang, Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic, Cancer Res., 2005, 65, 6207–6219.

    Article  CAS  PubMed  Google Scholar 

  64. J. A. Kruger, C. D. Kaplan, Y. Luo, H. Zhou, D. Markowitz, R. Xiang, et al., Characterization of stem cell-like cancer cells in immune-competent mice, Blood, 2006, 108, 3906–3912.

    Article  CAS  PubMed  Google Scholar 

  65. M. A. Harris, H. Yang, B. E. Low, J. Mukherjee, A. Guha, R. T. Bronson, et al., Cancer stem cells are enriched in the side population cells in a mouse model of glioma, Cancer Res., 2008, 68, 10051–10059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. T. Kondo, T. Setoguchi, T. Taga, Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 781–786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. M. Dean, T. Fojo, S. Bates, Tumour stem cells and drug resistance, Nat. Rev. Cancer, 2005, 5, 275–284.

    Article  CAS  PubMed  Google Scholar 

  68. S. F. Purkiss, M. F. Grahn, M. Turkish, M. G. Macey, N. S. Williams, In vitro modulation of haematoporphyrin derivative photodynamic therapy on colorectal carcinoma multicellular spheroids by verapamil, Br. J. Surg., 1992, 79, 120–125.

    Article  CAS  PubMed  Google Scholar 

  69. D. Kessel, C. Erickson, Porphyrin photosensitization of multi-drug resistant cell types, Photochem. Photobiol., 1992, 55, 397–399.

    Article  CAS  PubMed  Google Scholar 

  70. D. L. Frazier, M. A. Barnhill, X. Lu, E. Jones, G. Niemeyer, L. Mishu, et al., Effect of multidrug-resistant P-glycoprotein gene expression on chloroaluminum tetrasulfonate phthalocyanine concentration, Lasers Surg. Med., 1993, 13, 511–516.

    Article  CAS  PubMed  Google Scholar 

  71. M. H. Teiten, L. Bezdetnaya, J. L. Merlin, C. Bour-Dill, M. E. Pauly, M. Dicato, et al., Effect of meta-tetra(hydroxyphenyl)chlorin (mTHPC)-mediated photodynamic therapy on sensitive and multidrug-resistant human breast cancer cells, J. Photochem. Photobiol., B, 2001, 62, 146–152.

    Article  CAS  Google Scholar 

  72. J. W. Jonker, M. Buitelaar, E. Wagenaar, V. van d, G. L. Scheffer, R. J. Scheper, et al., The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 15649–15654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. R. W. Robey, K. Steadman, O. Polgar, S. E. Bates, ABCG2-mediated transport of photosensitizers: potential impact on photodynamic therapy, Cancer Biol. Ther., 2005, 4, 187–194.

    Article  CAS  PubMed  Google Scholar 

  74. R. W. Robey, K. Steadman, O. Polgar, K. Morisaki, M. Blayney, P. Mistry, et al., Pheophorbide a is a specific probe for ABCG2 function and inhibition, Cancer Res., 2004, 64, 1242–1246.

    Article  CAS  PubMed  Google Scholar 

  75. W. Liu, M. R. Baer, M. J. Bowman, P. Pera, X. Zheng, J. Morgan, et al., The tyrosine kinase inhibitor imatinib mesylate enhances the efficacy of photodynamic therapy by inhibiting ABCG2, Clin. Cancer Res., 2007, 13, 2463–2470.

    Article  CAS  PubMed  Google Scholar 

  76. J. Morgan, J. D. Jackson, X. Zheng, S. K. Pandey, R. K. Pandey, Substrate Affinity of Photosensitizers Derived from Chlorophyll-a: The ABCG2 Transporter Affects the Phototoxic Response of Side Population Stem Cell-like Cancer Cells to Photodynamic Therapy, Mol. Pharm., 2010, 7, 1789–1804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. J. Usuda, Y. Tsunoda, S. Ichinose, T. Ishizumi, K. Ohtani, S. Maehara, et al., Breast cancer resistant protein (BCRP) is a molecular determinant of the outcome of photodynamic therapy (PDT) for centrally located early lung cancer, Lung Cancer, 2010, 67, 198–204.

    Article  PubMed  Google Scholar 

  78. R. Jendzelovsky, J. Mikes, J. Koval’, K. Soucek, J. Prochazkova, M. Kello, et al., Drug efflux transporters, MRP1 and BCRP, affect the outcome of hypericin-mediated photodynamic therapy in HT-29 adenocarcinoma cells, Photochem. Photobiol. Sci., 2009, 8, 1716–1723.

    Article  CAS  PubMed  Google Scholar 

  79. C. E. Eyler, J. N. Rich, Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis, J. Clin. Oncol., 2008, 26, 2839–2845.

    Article  CAS  PubMed  Google Scholar 

  80. M. Maugeri-Sacca, M. Bartucci, M. R. De, DNA damage repair pathways in cancer stem cells, Mol. Cancer Ther., 2012, 11, 1627–1636.

    Article  CAS  PubMed  Google Scholar 

  81. P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, et al., Photodynamic therapy of cancer: An update, CA-Cancer J. Clin., 2011, 61, 250–281.

    Article  PubMed  PubMed Central  Google Scholar 

  82. J. Lessard, G. Sauvageau, Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells, Nature, 2003, 423, 255–260.

    Article  CAS  PubMed  Google Scholar 

  83. A. Ruiz i Altaba, Hedgehog signaling and the Gli code in stem cells, cancer, and metastases, Sci. Signaling, 2011, 4, t9.

    Article  Google Scholar 

  84. K. Hoffmeyer, A. Raggioli, S. Rudloff, R. Anton, A. Hierholzer, I. Del V, et al., Wnt/beta-catenin signaling regulates telomerase in stem cells and cancer cells, Science, 2012, 336, 1549–1554.

    Article  CAS  PubMed  Google Scholar 

  85. J. Wang, B. A. Sullenger, J. N. Rich, Notch signaling in cancer stem cells, Adv. Exp. Med. Biol., 2012, 727, 174–185.

    Article  CAS  PubMed  Google Scholar 

  86. E. Kim, M. Kim, D. H. Woo, Y. Shin, J. Shin, N. Chang, et al., Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells, Cancer Cell, 2013, 23, 839–852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. R. J. Vanner, M. Remke, M. Gallo, H. J. Selvadurai, F. Coutinho, L. Lee, et al., Quiescent sox2(+) cells drive hierarchical growth and relapse in sonic hedgehog subgroup medulloblastoma, Cancer Cell, 2014, 26, 33–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. H. Korkaya, A. Paulson, F. Iovino, M. S. Wicha, HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion, Oncogene, 2008, 27, 6120–6130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. C. Boccaccio, P. Luraghi, P. M. Comoglio, MET-mediated resistance to EGFR inhibitors: an old liaison rooted in colorectal cancer stem cells, Cancer Res., 2014, 74, 3647–3651.

    Article  CAS  PubMed  Google Scholar 

  90. A. Weyergang, P. K. Selbo, K. Berg, Photochemically stimulated drug delivery increases the cytotoxicity and specificity of EGF–saporin, J. Controlled Release, 2006, 111, 165–173.

    Article  CAS  Google Scholar 

  91. W. L. Yip, A. Weyergang, K. Berg, H. H. Tonnesen, P. K. Selbo, Targeted Delivery and Enhanced Cytotoxicity of Cetuximab-Saporin by Photochemical Internalization in EGFR-Positive Cancer Cells, Mol. Pharmaceutics, 2007, 4, 241–251.

    Article  CAS  Google Scholar 

  92. A. Weyergang, P. K. Selbo, K. Berg, Sustained ERK inhibition by EGFR targeting therapies is a predictive factor for synergistic cytotoxicity with PDT as neoadjuvant therapy, Biochim. Biophys. Acta, 2012, 10.

    Google Scholar 

  93. M. B. Berstad, L. Cheung, K. Berg, Q. Peng, A. Fremstedal, S. Patzke, et al., Design of an EGFR-targeting toxin for photochemical delivery; in vitro and in vivo selectivity and efficacy, Oncogene, 2015 10.1038/onc.2015.15

    Google Scholar 

  94. S. Bao, Q. Wu, S. Sathornsumetee, Y. Hao, Z. Li, A. B. Hjelmeland, et al., Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor, Cancer Res., 2006, 66, 7843–7848.

    Article  CAS  PubMed  Google Scholar 

  95. N. Oka, A. Soeda, A. Inagaki, M. Onodera, H. Maruyama, A. Hara, et al., VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells, Biochem. Biophys. Res. Commun., 2007, 360, 553–559.

    Article  CAS  PubMed  Google Scholar 

  96. A. Ferrario, K. F. von Tiehl, N. Rucker, M. A. Schwarz, P. S. Gill, C. J. Gomer, Antiangiogenic treatment enhances photodynamic therapy responsiveness in a mouse mammary carcinoma, Cancer Res., 2000, 60, 4066–4069.

    CAS  PubMed  Google Scholar 

  97. N. Solban, P. K. Selbo, A. K. Sinha, S. K. Chang, T. Hasan, Mechanistic Investigation and Implications of PDT-Induction of VEGF in Prostate Cancer, Cancer Res., 2006, 66, 5633–5640.

    Article  CAS  PubMed  Google Scholar 

  98. A. Ferrario, A. M. Fisher, N. Rucker, C. J. Gomer, Celecoxib and NS-398 enhance photodynamic therapy by increasing in vitro apoptosis and decreasing in vivo inflammatory and angiogenic factors, Cancer Res., 2005, 65, 9473–9478.

    Article  CAS  PubMed  Google Scholar 

  99. A. Ferrario, C. J. Gomer, Avastin Enhances Photodynamic Therapy Treatment of Kaposi’s Sarcoma in a Mouse Tumor Model, J. Environ. Pathol. Toxicol. Oncol., 2006, 25, 251–260.

    Article  CAS  PubMed  Google Scholar 

  100. A. Weiss, J. R. van Beijnum, D. Bonvin, P. Jichlinski, P. J. Dyson, A. W. Griffioen, et al., Low-dose angiostatic tyrosine kinase inhibitors improve photodynamic therapy for cancer: lack of vascular normalization, J. Cell Mol. Med., 2014, 18, 480–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. J. Piette, C. Volanti, A. Vantieghem, J. Y. Matroule, Y. Habraken, P. Agostinis, Cell death and growth arrest in response to photodynamic therapy with membrane-bound photosensitizers, Biochem. Pharmacol., 2003, 66, 1651–1659.

    Article  CAS  PubMed  Google Scholar 

  102. C. J. Gomer, Induction of prosurvival molecules during treatment: rethinking therapy options for photodynamic therapy, J. Natl. Compr. Canc. Netw., 2012, 10, S35–S39.

    Article  CAS  PubMed  Google Scholar 

  103. N. Hendrickx, C. Volanti, U. Moens, O. M. Seternes, W. P. de, J. R. Vandenheede, et al., Up-regulation of cyclooxygenase-2 and apoptosis resistance by p38 MAPK in hypericin-mediated photodynamic therapy of human cancer cells, J. Biol. Chem., 2003, 278, 52231–52239.

    Article  CAS  PubMed  Google Scholar 

  104. V. Rapozzi, K. Umezawa, L. E. Xodo, Role of NF-kappaB/Snail/RKIP loop in the response of tumor cells to photodynamic therapy, Lasers Surg. Med., 2011, 43, 575–585.

    Article  PubMed  Google Scholar 

  105. R. Bhowmick, A. W. Girotti, Cytoprotective signaling associated with nitric oxide upregulation in tumor cells subjected to photodynamic therapy-like oxidative stress, Free Radicals Biol. Med., 2013, 57, 39–48.

    Article  CAS  Google Scholar 

  106. M. Liu, T. Sakamaki, M. C. Casimiro, N. E. Willmarth, A. A. Quong, X. Ju, et al., The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion, Cancer Res., 2010, 70, 10464–10473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. P. J. Kim, J. Plescia, H. Clevers, E. R. Fearon, D. C. Altieri, Survivin and molecular pathogenesis of colorectal cancer, Lancet, 2003, 362, 205–209.

    Article  CAS  PubMed  Google Scholar 

  108. M. J. Pishvaian, S. W. Byers, Biomarkers of WNT signaling, Cancer Biomark., 2007, 3, 263–274.

    Article  CAS  PubMed  Google Scholar 

  109. A. Weyergang, O. Kaalhus, K. Berg, Photodynamic targeting of EGFR does not predict the treatment outcome in combination with the EGFR tyrosine kinase inhibitor Tyrphostin AG1478, Photochem. Photobiol. Sci., 2008, 7, 1032–1040.

    Article  CAS  PubMed  Google Scholar 

  110. A. Weyergang, L. H. Cheung, M. G. Rosenblum, K. A. Mohamedali, Q. Peng, J. Waltenberger, et al., Photochemical internalization augments tumor vascular cytotoxicity and specificity of VEGF(121)/rGel fusion toxin, J. Controlled Release, 2014, 180, 1–9.

    Article  CAS  Google Scholar 

  111. E. Fuchs, The tortoise and the hair: slow-cycling cells in the stem cell race, Cell, 2009, 137, 811–819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. L. Li, R. Bhatia, Stem cell quiescence, Clin. Cancer Res., 2011, 17, 4936–4941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. M. A. Essers, A. Trumpp, Targeting leukemic stem cells by breaking their dormancy, Mol. Oncol., 2010, 4, 443–450.

    Article  PubMed  PubMed Central  Google Scholar 

  114. T. H. Cheung, T. A. Rando, Molecular regulation of stem cell quiescence, Nat. Rev. Mol. Cell Biol., 2013, 14, 329–340.

    Article  CAS  PubMed  Google Scholar 

  115. J. R. Masters, B. Koberle, Curing metastatic cancer: lessons from testicular germ-cell tumours, Nat. Rev. Cancer, 2003, 3, 517–525.

    Article  CAS  PubMed  Google Scholar 

  116. K. Ito, T. Suda, Metabolic requirements for the maintenance of self-renewing stem cells, Nat. Rev. Mol. Cell Biol., 2014, 15, 243–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. B. Ortel, N. Chen, J. Brissette, G. P. Dotto, E. Maytin, T. Hasan, Differentiation-specific increase in ALA-induced protoporphyrin IX accumulation in primary mouse keratinocytes, Br. J. Cancer, 1998, 77, 1744–1751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. D. Feldman, A. V. Krishnan, S. Swami, E. Giovannucci, B. J. Feldman, The role of vitamin D in reducing cancer risk and progression, Nat. Rev. Cancer, 2014, 14, 342–357.

    Article  CAS  PubMed  Google Scholar 

  119. M. Bose, X. Hao, J. Ju, A. Husain, S. Park, J. D. Lambert, et al., Inhibition of tumorigenesis in ApcMin/+ mice by a combination of (-)-epigallocatechin-3-gallate and fish oil, J. Agric. Food Chem., 2007, 55, 7695–7700.

    Article  CAS  PubMed  Google Scholar 

  120. H. G. Palmer, J. M. Gonzalez-Sancho, J. Espada, M. T. Berciano, I. Puig, J. Baulida, et al., Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling, J. Cell Biol., 2001, 154, 369–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. I. Mellman, Endocytosis and molecular sorting, Annu. Rev. Cell Dev. Biol., 1996, 12, 575–625.

    Article  CAS  PubMed  Google Scholar 

  122. A. P. Morel, M. Lievre, C. Thomas, G. Hinkal, S. Ansieau, A. Puisieux, Generation of breast cancer stem cells through epithelial-mesenchymal transition, PLoS One, 2008, 3, e2888.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. S. A. Mani, W. Guo, M. J. Liao, E. N. Eaton, A. Ayyanan, A. Y. Zhou, et al., The epithelial-mesenchymal transition generates cells with properties of stem cells, Cell, 2008, 133, 704–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. M. H. Yang, D. S. Hsu, H. W. Wang, H. J. Wang, H. Y. Lan, W. H. Yang, et al., Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition, Nat. Cell Biol., 2010, 12, 982–992.

    Article  PubMed  CAS  Google Scholar 

  125. L. Vermeulen, E. M. de Sousa, M. van der Heijden, K. Cameron, J. H. de Jong, T. Borovski, et al., Wnt activity defines colon cancer stem cells and is regulated by the microenvironment, Nat. Cell Biol., 2010, 12, 468–476.

    Article  CAS  PubMed  Google Scholar 

  126. I. Rizvi, U. A. Gurkan, S. Tasoglu, N. Alagic, J. P. Celli, L. B. Mensah, et al., Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, E1974–E1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. M. Shipitsin, L. L. Campbell, P. Argani, S. Weremowicz, N. Bloushtain-Qimron, J. Yao, et al., Molecular definition of breast tumor heterogeneity, Cancer Cell, 2007, 11, 259–273.

    Article  CAS  PubMed  Google Scholar 

  128. S. Y. Park, M. Gonen, H. J. Kim, F. Michor, K. Polyak, Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype, J. Clin. Invest., 2010, 120, 636–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. C. Lottaz, D. Beier, K. Meyer, P. Kumar, A. Hermann, J. Schwarz, et al., Transcriptional profiles of CD133+ and CD133− glioblastoma-derived cancer stem cell lines suggest different cells of origin, Cancer Res., 2010, 70, 2030–2040.

    Article  CAS  PubMed  Google Scholar 

  130. K. Berg, P. K. Selbo, L. Prasmickaite, T. E. Tjelle, K. Sandvig, J. Moan, et al., Photochemical internalization: a novel technology for delivery of macromolecules into cytosol, Cancer Res., 1999, 59, 1180–1183.

    CAS  PubMed  Google Scholar 

  131. A. Høgset, L. Prasmickaite, P. K. Selbo, M. Hellum, B. O. Engesaeter, A. Bonsted, et al., Photochemical internalisation in drug and gene delivery, Adv. Drug Delivery Rev., 2004, 56, 95–115.

    Article  CAS  Google Scholar 

  132. P. K. Selbo, A. Weyergang, A. Hogset, O. J. Norum, M. B. Berstad, M. Vikdal, et al., Photochemical internalization provides time- and space-controlled endolysosomal escape of therapeutic molecules, J. Controlled Release, 2010, 148, 2–12.

    Article  CAS  Google Scholar 

  133. P. K. Selbo, K. Sandvig, V. Kirveliene, K. Berg, Release of gelonin from endosomes and lysosomes to cytosol by photochemical internalization, Biochim. Biophys. Acta, 2000, 1475, 307–313.

    Article  CAS  PubMed  Google Scholar 

  134. K. Berg, S. Nordstrand, P. K. Selbo, D. T. Tran, E. ngell-Petersen, A. Hogset, Disulfonated tetraphenyl chlorin (TPCS2a), a novel photosensitizer developed for clinical utilization of photochemical internalization, Photochem. Photobiol. Sci., 2011, 10, 1637–1651.

    Article  CAS  PubMed  Google Scholar 

  135. A. Weyergang, P. K. Selbo, M. E. Berstad, M. Bostad, K. Berg, Photochemical internalization of tumor-targeted protein toxins, Lasers Surg. Med., 2011, 43, 721–733.

    Article  PubMed  Google Scholar 

  136. K. Berg, A. Dietze, O. Kaalhus, A. Høgset, Site-specific drug delivery by photochemical internalization enhances the antitumor effect of bleomycin, Clin. Cancer Res., 2005, 11, 8476–8485.

    Article  CAS  PubMed  Google Scholar 

  137. P. J. Lou, P. S. Lai, M. J. Shieh, A. J. MacRobert, K. Berg, S. G. Bown, Reversal of doxorubicin resistance in breast cancer cells by photochemical internalization, Int. J. Cancer, 2006, 119, 2692–2698.

    Article  CAS  PubMed  Google Scholar 

  138. M. Håkerud, Y. Waeckerle-Men, P. K. Selbo, T. M. Kundig, A. Høgset, P. Johansen, Intradermal photosensitisation facilitates stimulation of MHC class-I restricted CD8 T-cell responses of co-administered antigen, J. Controlled Release, 2014, 174, 143–150.

    Article  CAS  Google Scholar 

  139. M. Håkerud, P. K. Selbo, Y. Waeckerle-Men, E. Contassot, P. Dziunycz, T. M. Kundig, et al., Photosensitisation facilitates cross-priming of adjuvant-free protein vaccines and stimulation of tumour-suppressing CD8 T cells, J. Controlled Release, 2014, 198, 10–17.

    Article  CAS  Google Scholar 

  140. H. Lou, M. Dean, Targeted therapy for cancer stem cells: the patched pathway and ABC transporters, Oncogene, 2007, 26, 1357–1360.

    Article  CAS  PubMed  Google Scholar 

  141. J. D. Allen, L. A. van, J. M. Lakhai, V. van d, T. O. van, G. Reid, et al., Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C, Mol. Cancer Ther., 2002, 1, 417–425.

    CAS  PubMed  Google Scholar 

  142. P. J. Houghton, G. S. Germain, F. C. Harwood, J. D. Schuetz, C. F. Stewart, E. Buchdunger, et al., Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro, Cancer Res., 2004, 64, 2333–2337.

    Article  CAS  PubMed  Google Scholar 

  143. C. Ozvegy-Laczka, T. Hegedus, G. Varady, O. Ujhelly, J. D. Schuetz, A. Varadi, et al., High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter, Mol. Pharmacol., 2004, 65, 1485–1495.

    Article  PubMed  Google Scholar 

  144. K. Yanase, S. Tsukahara, S. Asada, E. Ishikawa, Y. Imai, Y. Sugimoto, Gefitinib reverses breast cancer resistance protein-mediated drug resistance, Mol. Cancer Ther., 2004, 3, 1119–1125.

    CAS  PubMed  Google Scholar 

  145. C. Brendel, C. Scharenberg, M. Dohse, R. W. Robey, S. E. Bates, S. Shukla, et al., Imatinib mesylate and nilotinib (AMN107) exhibit high-affinity interaction with ABCG2 on primitive hematopoietic stem cells, Leukemia, 2007, 21, 1267–1275.

    Article  CAS  PubMed  Google Scholar 

  146. I. Dikic, Mechanisms controlling EGF receptor endocytosis and degradation, Biochem. Soc. Trans., 2003, 31, 1178–1181.

    Article  CAS  PubMed  Google Scholar 

  147. Y. J. Chen, W. C. Huang, Y. L. Wei, S. C. Hsu, P. Yuan, H. Y. Lin, et al., Elevated BCRP/ABCG2 expression confers acquired resistance to gefitinib in wild-type EGFR-expressing cells, PLoS One, 2011, 6, e21428. 10.1371/journal.pone.0021428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. L. Porcelli, E. Giovannetti, Y. G. Assaraf, G. Jansen, G. L. Scheffer, I. Kathman, et al., The EGFR Pathway Regulates BCRP Expression in NSCLC Cells: Role of Erlotinib, Curr. Drug Targets, 2014, 15, 1322–1330.

    Article  CAS  PubMed  Google Scholar 

  149. X. K. Wang, J. H. He, J. H. Xu, S. Ye, F. Wang, H. Zhang, et al., Afatinib enhances the efficacy of conventional chemotherapeutic agents by eradicating cancer stem-like cells, Cancer Res., 2014, 74, 4431–4445.

    Article  CAS  PubMed  Google Scholar 

  150. T. Mazard, A. Causse, J. Simony, W. Leconet, N. Vezzio-Vie, A. Torro, et al., Sorafenib overcomes irinotecan resistance in colorectal cancer by inhibiting the ABCG2 drug-efflux pump, Mol. Cancer Ther., 2013, 12, 2121–2134.

    Article  CAS  PubMed  Google Scholar 

  151. M. G. del Carmen, I. Rizvi, Y. Chang, A. C. Moor, E. Oliva, M. Sherwood, et al., Synergism of epidermal growth factor receptor-targeted immunotherapy with photodynamic treatment of ovarian cancer in vivo, J. Natl. Cancer Inst., 2005, 97, 1516–1524.

    Article  PubMed  CAS  Google Scholar 

  152. P. Bhatia, M. Bernier, M. Sanghvi, R. Moaddel, R. Schwarting, A. Ramamoorthy, et al., Breast cancer resistance protein (BCRP/ABCG2) localises to the nucleus in glioblastoma multiforme cells, Xenobiotica, 2012, 42, 748–755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. M. Bostad, K. Berg, A. Hogset, E. Skarpen, H. Stenmark, P. K. Selbo, Photochemical internalization (PCI) of immunotoxins targeting CD133 is specific and highly potent at femtomolar levels in cells with cancer stem cell properties, J. Controlled Release, 2013, 168, 317–326.

    Article  CAS  Google Scholar 

  154. E. W. Stratford, M. Bostad, R. Castro, E. Skarpen, K. Berg, A. Hogset, et al., Photochemical internalization of CD133-targeting immunotoxins efficiently depletes sarcoma cells with stem-like properties and reduces tumorigenicity, Biochim. Biophys. Acta, 2013, 1830, 4235–4243.

    Article  CAS  PubMed  Google Scholar 

  155. M. Bostad, M. Kausberg, A. Weyergang, C. E. Olsen, K. Berg, A. Hogset, et al., Light-triggered, efficient cytosolic release of IM7-saporin targeting the putative cancer stem cell marker CD44 by photochemical internalization, Mol. Pharm., 2014, 11, 2764–2776.

    Article  CAS  PubMed  Google Scholar 

  156. I. Pastan, R. J. Kreitman, Immunotoxins for targeted cancer therapy, Adv. Drug Delivery Rev., 1998, 31, 53–88.

    Article  CAS  Google Scholar 

  157. I. Pastan, R. Hassan, D. J. FitzGerald, R. J. Kreitman, Immunotoxin therapy of cancer, Nat. Rev. Cancer, 2006, 6, 559–565.

    Article  CAS  PubMed  Google Scholar 

  158. T. G. Natarajan, K. T. FitzGerald, Markers in normal and cancer stem cells, Cancer Biomark., 2007, 3, 211–231.

    Article  CAS  PubMed  Google Scholar 

  159. B. M. Tijink, J. Buter, B. R. de, G. Giaccone, M. S. Lang, A. Staab, et al., A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus, Clin. Cancer Res., 2006, 12, 6064–6072.

    Article  CAS  PubMed  Google Scholar 

  160. A. H. Yin, S. Miraglia, E. D. Zanjani, G. meida-Porada, M. Ogawa, A. G. Leary, et al., AC133, a novel marker for human hematopoietic stem and progenitor cells, Blood, 1997, 90, 5002–5012.

    Article  CAS  PubMed  Google Scholar 

  161. S. Miraglia, W. Godfrey, A. H. Yin, K. Atkins, R. Warnke, J. T. Holden, et al., A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning, Blood, 1997, 90, 5013–5021.

    Article  CAS  PubMed  Google Scholar 

  162. A. Weigmann, D. Corbeil, A. Hellwig, W. B. Huttner, Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells, Proc. Natl. Acad. Sci. U. S. A., 1997, 94, 12425–12430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. S. K. Singh, C. Hawkins, I. D. Clarke, J. A. Squire, J. Bayani, T. Hide, et al., Identification of human brain tumour initiating cells, Nature, 2004, 432, 396–401.

    Article  CAS  PubMed  Google Scholar 

  164. A. Salmaggi, A. Boiardi, M. Gelati, A. Russo, C. Calatozzolo, E. Ciusani, et al., Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype, Glia, 2006, 54, 850–860.

    Article  PubMed  Google Scholar 

  165. P. C. Hermann, S. L. Huber, T. Herrler, A. Aicher, J. W. Ellwart, M. Guba, et al., Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer, Cell Stem Cell, 2007, 1, 313–323.

    Article  CAS  PubMed  Google Scholar 

  166. A. T. Collins, P. A. Berry, C. Hyde, M. J. Stower, N. J. Maitland, Prospective identification of tumorigenic prostate cancer stem cells, Cancer Res., 2005, 65, 10946–10951.

    Article  CAS  PubMed  Google Scholar 

  167. M. D. Curley, V. A. Therrien, C. L. Cummings, P. A. Sergent, C. R. Koulouris, A. M. Friel, et al., CD133 expression defines a tumor initiating cell population in primary human ovarian cancer, Stem Cells, 2009, 27, 2875–2883.

    CAS  PubMed  Google Scholar 

  168. G. K. Patel, C. L. Yee, A. Terunuma, W. G. Telford, N. Voong, S. H. Yuspa, et al., Identification and characterization of tumor-initiating cells in human primary cutaneous squamous cell carcinoma, J. Invest. Dermatol., 2012, 132, 401–409.

    Article  CAS  PubMed  Google Scholar 

  169. M. L. Suva, N. Riggi, J. C. Stehle, K. Baumer, S. Tercier, J. M. Joseph, et al., Identification of cancer stem cells in Ewing’s sarcoma, Cancer Res., 2009, 69, 1776–1781.

    Article  CAS  PubMed  Google Scholar 

  170. V. Tirino, V. Desiderio, R. d’Aquino, F. F. De, G. Pirozzi, A. Graziano, et al., Detection and characterization of CD133+ cancer stem cells in human solid tumours, PLoS One, 2008, 3, e3469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. F. Zeppernick, R. Ahmadi, B. Campos, C. Dictus, B. M. Helmke, N. Becker, et al., Stem cell marker CD133 affects clinical outcome in glioma patients, Clin. Cancer Res., 2008, 14, 123–129.

    Article  CAS  PubMed  Google Scholar 

  172. D. Horst, L. Kriegl, J. Engel, T. Kirchner, A. Jung, CD133 expression is an independent prognostic marker for low survival in colorectal cancer, Br. J. Cancer, 2008, 99, 1285–1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. K. Kemper, M. Versloot, K. Cameron, S. Colak, J. Bleakley, L. Vermeulen, et al., Mutations in the Ras-Raf axis underlie the prognostic value of CD133 in colorectal cancer, Clin. Cancer Res., 2012, 18, 3132–3141.

    Article  CAS  PubMed  Google Scholar 

  174. G. Liu, X. Yuan, Z. Zeng, P. Tunici, H. Ng, I. R. Abdulkadir, et al., Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma, Mol. Cancer, 2006, 5, 67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. J. Wang, P. O. Sakariassen, O. Tsinkalovsky, H. Immervoll, S. O. Boe, A. Svendsen, et al., CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells, Int. J. Cancer, 2008, 122, 761–768.

    Article  CAS  PubMed  Google Scholar 

  176. S. V. Shmelkov, J. M. Butler, A. T. Hooper, A. Hormigo, J. Kushner, T. Milde, et al., CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors, J. Clin. Invest., 2008, 118, 2111–2120.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. K. Kemper, M. R. Sprick, B. M. de, A. Scopelliti, L. Vermeulen, M. Hoek, et al., The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation, Cancer Res., 2010, 70, 719–729.

    Article  CAS  PubMed  Google Scholar 

  178. N. N. Waldron, D. S. Kaufman, S. Oh, Z. Inde, M. K. Hexum, J. R. Ohlfest, et al., Targeting tumor-initiating cancer cells with dCD133KDEL shows impressive tumor reductions in a xenotransplant model of human head and neck cancer, Mol. Cancer Ther., 2011, 10, 1829–1838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. K. S. Lehnus, L. K. Donovan, X. Huang, N. Zhao, T. J. Warr, G. J. Pilkington, et al., CD133 glycosylation is enhanced by hypoxia in cultured glioma stem cells, Int. J. Oncol., 2013, 42, 1011–1017.

    Article  CAS  PubMed  Google Scholar 

  180. B. Campos, C. C. Herold-Mende, Insight into the complex regulation of CD133 in glioma, Int. J. Cancer, 2011, 128, 501–510.

    Article  CAS  PubMed  Google Scholar 

  181. T. R. Chen, D. Drabkowski, R. J. Hay, M. Macy, W. Peterson, Jr., WiDr is a derivative of another colon adenocarcinoma cell line, HT-29, Cancer Genet. Cytogenet., 1987, 27, 125–134.

    Article  CAS  PubMed  Google Scholar 

  182. N. R. Rodrigues, A. Rowan, M. E. Smith, I. B. Kerr, W. F. Bodmer, J. V. Gannon, et al., p53 mutations in colorectal cancer, Proc. Natl. Acad. Sci. U. S. A., 1990, 87, 7555–7559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. A. Prahallad, C. Sun, S. Huang, N. F. Di, R. Salazar, D. Zecchin, et al., Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR, Nature, 2012, 483, 100–103.

    Article  CAS  PubMed  Google Scholar 

  184. G. J. Peters, E. Smitskamp-Wilms, K. Smid, H. M. Pinedo, G. Jansen, Determinants of activity of the antifolate thymidylate synthase inhibitors Tomudex (ZD1694) and GW1843U89 against mono- and multilayered colon cancer cell lines under folate-restricted conditions, Cancer Res., 1999, 59, 5529–5535.

    CAS  PubMed  Google Scholar 

  185. P. Virsik-Kopp, H. Hofman-Huther, M. Rave-Frank, H. Schmidberger, The effect of wortmannin on radiation-induced chromosome aberration formation in the radioresistant tumor cell line WiDr, Radiat. Res., 2005, 164, 148–156.

    Article  PubMed  Google Scholar 

  186. C. Dittfeld, A. Dietrich, S. Peickert, S. Hering, M. Baumann, M. Grade, et al., CD133 expression is not selective for tumor-initiating or radioresistant cell populations in the CRC cell lines HCT-116, Radiother. Oncol., 2009, 92, 353–361.

    Article  CAS  PubMed  Google Scholar 

  187. F. X. Real, G. Egea, C. Franci, M. H. Schussler, M. Xu, S. Welt, Mucin production by colon cancer cells cultured in serum-free medium, Int. J. Cancer, 1991, 49, 787–795.

    Article  CAS  PubMed  Google Scholar 

  188. P. Noguchi, R. Wallace, J. Johnson, E. M. Earley, S. O’Brien, S. Ferrone, et al., Characterization of the WIDR: a human colon carcinoma cell line, In Vitro, 1979, 15, 401–408.

    Article  CAS  PubMed  Google Scholar 

  189. T. M. Yeung, S. C. Gandhi, J. L. Wilding, R. Muschel, W. F. Bodmer, Cancer stem cells from colorectal cancer-derived cell lines, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 3722–3727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. S. H. Sahlberg, D. Spiegelberg, B. Glimelius, B. Stenerlow, M. Nestor, Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells, PLoS One, 2014, 9, e94621.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. E. W. Stratford, R. Castro, A. Wennerstrom, R. Holm, E. Munthe, S. Lauvrak, et al., Liposarcoma Cells with Aldefluor and CD133 Activity have a Cancer Stem Cell Potential, Clin. Sarcoma Res., 2011, 1, 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. P. Dalerba, S. J. Dylla, I. K. Park, R. Liu, X. Wang, R. W. Cho, et al., Phenotypic characterization of human colorectal cancer stem cells, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 10158–10163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. K. Kemper, C. Grandela, J. P. Medema, Molecular identification and targeting of colorectal cancer stem cells, Oncotarget, 2010, 1, 387–395.

    Article  PubMed  PubMed Central  Google Scholar 

  194. S. C. Ghosh, A. S. Neslihan, J. Klostergaard, CD44: a validated target for improved delivery of cancer therapeutics, Expert Opin. Ther. Targets, 2012, 16, 635–650.

    Article  CAS  PubMed  Google Scholar 

  195. C. Liu, D. G. Tang, MicroRNA regulation of cancer stem cells, Cancer Res., 2011, 71, 5950–5954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. C. M. Fillmore, C. Kuperwasser, Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy, Breast Cancer Res., 2008, 10, R25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. N. A. Dallas, L. Xia, F. Fan, M. J. Gray, P. Gaur, B. G. van, et al., Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition, Cancer Res., 2009, 69, 1951–1957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. W. L. Hwang, M. H. Yang, M. L. Tsai, H. Y. Lan, S. H. Su, S. C. Chang, et al., SNAIL regulates interleukin-8 expression, stem cell-like activity, and tumorigenicity of human colorectal carcinoma cells, Gastroenterology, 2011, 141, 279–291.

    Article  CAS  PubMed  Google Scholar 

  199. C. J. Lee, J. Dosch, D. M. Simeone, Pancreatic cancer stem cells, J. Clin. Oncol., 2008, 26, 2806–2812.

    Article  PubMed  Google Scholar 

  200. L. Patrawala, T. Calhoun, R. Schneider-Broussard, H. Li, B. Bhatia, S. Tang, et al., Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells, Oncogene, 2006, 25, 1696–1708.

    Article  CAS  PubMed  Google Scholar 

  201. N. J. Maitland, A. T. Collins, Prostate cancer stem cells: a new target for therapy, J. Clin. Oncol., 2008, 26, 2862–2870.

    Article  PubMed  Google Scholar 

  202. L. Chang, P. H. Graham, J. Hao, J. Ni, J. Bucci, P. J. Cozzi, et al., Acquisition of epithelial-mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3 K/Akt/mTOR pathway in prostate cancer radioresistance, Cell Death Dis., 2013, 4, e875. 10.1038/cddis.2013.407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. K. Williams, K. Motiani, P. V. Giridhar, S. Kasper, CD44 integrates signaling in normal stem cell, cancer stem cell and (pre)metastatic niches, Exp. Biol. Med., 2013, 238, 324–338.

    Article  CAS  Google Scholar 

  204. O. Nagano, S. Okazaki, H. Saya, Redox regulation in stem-like cancer cells by CD44 variant isoforms, Oncogene, 2013, 32, 5191–5198.

    Article  CAS  PubMed  Google Scholar 

  205. A. M. Calcagno, C. D. Salcido, J. P. Gillet, C. P. Wu, J. M. Fostel, M. D. Mumau, et al., Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics, J. Natl. Cancer Inst., 2010, 102, 1637–1652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. S. Misra, S. Ghatak, B. P. Toole, Regulation of MDR1 expression and drug resistance by a positive feedback loop involving hyaluronan, phosphoinositide 3-kinase, and ErbB2, J. Biol. Chem., 2005, 280, 20310–20315.

    Article  CAS  PubMed  Google Scholar 

  207. M. Trzpis, P. M. McLaughlin, L. M. de Leij, M. C. Harmsen, Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule, Am. J. Pathol., 2007, 171, 386–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. P. A. Baeuerle, O. Gires, EpCAM (CD326) finding its role in cancer, Br. J. Cancer, 2007, 96, 417–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. M. Al-Hajj, M. S. Wicha, A. Benito-Hernandez, S. J. Morrison, M. F. Clarke, Prospective identification of tumorigenic breast cancer cells, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. C. Li, D. G. Heidt, P. Dalerba, C. F. Burant, L. Zhang, V. Adsay, et al., Identification of pancreatic cancer stem cells, Cancer Res., 2007, 67, 1030–1037.

    Article  CAS  PubMed  Google Scholar 

  211. M. Munz, C. Kieu, B. Mack, B. Schmitt, R. Zeidler, O. Gires, The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation, Oncogene, 2004, 23, 5748–5758.

    Article  PubMed  CAS  Google Scholar 

  212. D. Maetzel, S. Denzel, B. Mack, M. Canis, P. Went, M. Benk, et al., Nuclear signalling by tumour-associated antigen EpCAM, Nat. Cell Biol., 2009, 11, 162–171.

    Article  CAS  PubMed  Google Scholar 

  213. L. D. C. Gunnarsson, D. Paus, J. M. Karlsson and S. M. Kiprijanov, inventors; Affitech Research AS, assignee, Anti EpCAM antibodies, United States patentUS008637017B2, 2014.

    Google Scholar 

  214. M. R. Campoli, C. C. Chang, T. Kageshita, X. Wang, J. B. McCarthy, S. Ferrone, Human high molecular weight-melanoma-associated antigen (HMW-MAA): a melanoma cell surface chondroitin sulfate proteoglycan (MSCP) with biological and clinical significance, Crit. Rev. Immunol., 2004, 24, 267–296.

    Article  CAS  PubMed  Google Scholar 

  215. M. A. Price, L. E. Colvin Wanshura, J. Yang, J. Carlson, B. Xiang, G. Li, et al., CSPG4, a potential therapeutic target, facilitates malignant progression of melanoma, Pigm. Cell Melanoma Res., 2011, 24, 1148–1157.

    Article  CAS  Google Scholar 

  216. J. Legg, U. B. Jensen, S. Broad, I. Leigh, F. M. Watt, Role of melanoma chondroitin sulphate proteoglycan in patterning stem cells in human interfollicular epidermis, Development, 2003, 130, 6049–6063.

    Article  CAS  PubMed  Google Scholar 

  217. X. Wang, T. Osada, Y. Wang, L. Yu, K. Sakakura, A. Katayama, et al., CSPG4 protein as a new target for the antibody-based immunotherapy of triple-negative breast cancer, J. Natl. Cancer Inst., 2010, 102, 1496–1512.

    Article  PubMed  PubMed Central  Google Scholar 

  218. A. Weyergang, K. Berg, O. Kaalhus, Q. Peng, P. K. Selbo, Photodynamic Therapy Targets the mTOR Signaling Network in Vitro and in Vivo, Mol. Pharmaceutics, 2009, 6, 255–264.

    Article  CAS  Google Scholar 

  219. J. He, Y. Liu, T. Zhu, J. Zhu, F. DiMeco, A. L. Vescovi, et al., CD90 is identified as a candidate marker for cancer stem cells in primary high-grade gliomas using tissue microarrays, Mol. Cell. Proteomics, 2012, 11, M111. 10.1074/mcp.M111.010744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. R. Tehranchi, P. S. Woll, K. Anderson, N. Buza-Vidas, T. Mizukami, A. J. Mead, et al., Persistent malignant stem cells in del(5q) myelodysplasia in remission, N. Engl. J. Med., 2010, 363, 1025–1037.

    Article  CAS  PubMed  Google Scholar 

  221. V. S. Donnenberg, A. D. Donnenberg, L. Zimmerlin, R. J. Landreneau, R. Bhargava, R. A. Wetzel, et al., Localization of CD44 and CD90 positive cells to the invasive front of breast tumors, Cytometry B. Clin. Cytom., 2010, 78, 287–301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Z. F. Yang, D. W. Ho, M. N. Ng, C. K. Lau, W. C. Yu, P. Ngai, et al., Significance of CD90+ cancer stem cells in human liver cancer, Cancer Cell, 2008, 13, 153–166.

    Article  CAS  PubMed  Google Scholar 

  223. G. Civenni, A. Walter, N. Kobert, D. Mihic-Probst, M. Zipser, B. Belloni, et al., Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth, Cancer Res., 2011, 71, 3098–3109.

    Article  CAS  PubMed  Google Scholar 

  224. A. D. Boiko, O. V. Razorenova, R. M. van de, S. M. Swetter, D. L. Johnson, D. P. Ly, et al., Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271, Nature, 2010, 466, 133–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pål Kristian Selbo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selbo, P.K., Bostad, M., Olsen, C.E. et al. Photochemical internalisation, a minimally invasive strategy for light-controlled endosomal escape of cancer stem cell-targeting therapeutics. Photochem Photobiol Sci 14, 1433–1450 (2015). https://doi.org/10.1039/c5pp00027k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00027k

Navigation